Prepared by CGMSSEC Agenda Item: Plenary (Information docs)

Provided for information to Plenary

Status of implementation of CGMS High Level Priority Plan (2023-2027)

This working paper provides the status of implementation of CGMS High Level Priority Plan (2023-2027). It incorporates inputs from: - WG I, II, III and IV - CGMS Space Weather Coordination Group - International Science Working Group chairs and rapporteurs - GSICS **CEOS-CGMS** Joint Working Group on Climate The colour coding in the table corresponds to the following: Green: Priority is reflected in ongoing CGMS actions Yellow: Actions have been defined associated to the priority, but progress is limited **Red**: No actions associated with the priority can be identified or major obstacles is hindering progress

Action/Recommendation proposed:

This is an information document, supporting the annual process for revision of the HLPP

Plenary is invited to note the status of implementation of the HLPP 2023-2027.

This document presents the status of implementation of the CGMS High-Level Priority Plan (2022-2026), as agreed by CGMS at its 50th Plenary Session 26-28 June 2023 at JMA Headquarter, Tokyo, Japan. The document was submitted to review on the occasion of the CGMS-52 working group meetings 22-26 April 2024 at EUMETSAT, Darmstadt, Germany.

Inputs have also been provided by International Science Working Groups (through WG-II) and the joint CEOS-CGMS Working Group on Climate.

The table present the targets according to the logic of the CGMS end-to-end systems. A colour coding indicates the overall progress of achievement of the target:

ACHIEVED	Target has been achieved, will be proposed for removal from HLPP
	Priority is reflected in ongoing CGMS actions
	Actions have been defined associated to the priority, but progress is limited
	No actions associated with the priority can be identified or major obstacles is hindering progress

Ref	Target	Primary responsible for target in CGMS	Summary/highlights of progress	Overall Status
1	Operational Continuity and	WG-III		
	Contingency Planning			
1.1	Mitigate the impact of	WG-III	WG-III at its Risk Assessment Workshop in February	
	identified degradation or loss		identified mitigating actions to address loss of CGMS	
	of capabilities of the CGMS		baseline capabilities. The outcome of the Risk Assessment	
	baseline and ensure		was presented to all CGMS WGs to consider opportunities	
	appropriate contingency		to mitigate identified risks. (Associated actions are	
	measures are in place		recorded).	

Ref	Target	Primary responsible for target in CGMS	Summary/highlights of progress	Overall Status
1.1.1	Ensure continuity of passive microwave imager measurements		CGMS recognizes the need for a long-term plan for ~6 GHz frequency microwave imaging in at least one LEO orbit for all weather sea surface temperatures. Recommended mitigating actions included ensuring data availability from HY-2B, continue to work towards having 6 GHz data from two orbits (consistent with section 1.2.2), and NOAA to provide an update on SSMI status and possible follow-on. Europe to confirm plans for the Copernicus CIMR (Copernicus Imaging Microwave Radiometer) mission. It will be investigated by IPWG whether the current and planned μwave constellation provides adequate support for precipitation measurements, as these measurements depend mainly on frequencies around 90 GHz. As of 2024 there is low risk of not meeting the CGMS Baseline commitment; however, sensor performance requirements for different environmental parameters vary; ~6 GHz frequency microwave imaging critical for all weather SSTs, and >90 GHz frequency critical for precipitation.	

Ref	Target	Primary responsible for target in CGMS	Summary/highlights of progress	Overall Status
			CIMR Mission confirmed by ESA at RA WS 2024, subject to EU Funding Gate Milestone in June 2024.	
1.1.2	Ensure continuity of Precipitation Radar measurements;		2024 Risk assessment: Low risk of not meeting the CGMS Baseline commitment. FY-3I now provides continuity beyond FY-3G. After orbit boost GPM-Core Observatory EOL is now early 2030s.	Achieved
			NASA and JAXA action to confirm plans beyond the GPM Core.	
			Plans for PMM confirmed at RA WAS Feb 2024	
			WG-III recommends that the target be considered completed	

Ref	Target	Primary responsible for target in CGMS	Summary/highlights of progress	Overall Status
1.1.3	Ensure continuity of Scatterometer measurements		2023 Risk Assessment: Low risk of not meeting the CGMS Baseline commitment. FY-3J now provides coverage beyond FY-3E in the early morning orbit.	
			Oceansat-3A confirmed at RA WS 2024 ISRO to confirm plans beyond OceanSat-3A.	

Ref	Target	Primary responsible for target in CGMS	Summary/highlights of progress	Overall Status
1.1.4	Ensure continuity of Radio Occultation Measurements with required quantity, geographical coverage and temporal sampling for numerical weather prediction and for ionospheric monitoring		 2023 risk assessment: The CGMS Baseline commitment (14600 occultations per day) will not be met even with Metop-SG A1 and B1 (2025-26), and there is also a high risk of not meeting the commitment from low inclination orbits in the later part of the decade as there are no plans for a follow-on to COSMIC-2. There is inconsistent coverage from polar and high inclination orbits throughout the period (commitment for number of occultations can be met, but not the geographic distribution or performance to meet NWP requirements). Commercial operators offer some risk mitigation (assuming compliance with national and international mandates and policies). An HLPP objective already exists to advance the atmospheric Radio Occultation constellation, with the long-term goal of providing 20000 occultations per day on a sustained basis; consider an additional recommendation for tropical missions to carry RO sensors. 	
			Action on IROWG to review # of occultations provided by the planned missions in the CGMS baseline.	

Ref	Target	Primary responsible for target in CGMS	Summary/highlights of progress	Overall Status

Ref	Target	Primary responsible for target in CGMS	Summary/highlights of progress	Overall Status
1.1.5	Ensure continuity of Coronagraph Plasma Analyser and Magnetometer observations from L-1 through exploitation of scientific space weather missions for operational gap filling		Increasing risk of a gap in the early part of the decade and long term continuity at L1. Increasing risk of a gap until GOES-U and SWFO-L1 are launched as SOHO operating well past design life, but additional ground resources used to track STEREO-A may mitigate that risk in the event of SOHO loss before 2024. GOES-U launch will take place June 2024. Jan-23 to June 24 STEREO will provide a SOHO/LASCO equivalent view. Wallops and FBK large antennas have been prepared for NRT data and will be activated in case of SOHO failure. Additional resiliency can be provided by PUNCH, if needed as a gap filler. SWCG and WG-III recommends that this target should be considered achieved	Achieved

Ref	Target	Primary responsible for target in CGMS	Summary/highlights of progress	Overall Status
1.2	Advance the response to the WIGOS 2040 vision for space, by the implementation of new capabilities beyond the CGMS baseline	WG-III	CGMS reviews its response to the WIGOS vision annually, based on the WMO Gap Analysis. This review is conducted in the CGMS Risk Assessment Workshop and by WG-III.	

Ref	Target	Primary responsible for target in CGMS	Summary/highlights of progress	Overall Status
1.2.1	 Work towards establishing optimum constellations for new observations introduced in the CGMS baseline: Short Wave IR Spectrometers for monitoring of Greenhouse Gases (CO2 and CH4); Multi-viewing, multi- 		 CGMS contribution to SWIR spectrometer constellation for emission monitoring is being coordinated by the JWGClimate and its GHG Task Team. The capabilities of the CGMS baseline for aerosol measurements has been assessed and added to the 	
	channel, multi- polarisation imaging for aerosols;		 Further concrete actions to be discussed with WG-II. The capabilities of the CGMS baseline for monitoring of minor trace gases have been assessed and added to the baseline document. 	

Ref	Target	Primary responsible for target in CGMS	Summary/highlights of progress	Overall Status
	- UV limb sounding spectrometry for profiles of Ozone and trace gases;		Further concrete actions to be discussed with WG-II.	
1.2.2	Advance the new generation of GEO satellites, including advanced imaging, lightning mapping and hyperspectral IR sounding for the whole geostationary ring;		It is now confirmed that both GEO-XO and Himawari-10 will be manifesting IR sounders Action on ISRO to confirm HSIR plans for INSAT	
1.2.3	Work towards operational hourly daytime UV/VIS mapping of air quality from geostationary orbit;		Sentinel-4 planned for launch in 2025. TEMPO has been launched and ACX is now planned for GEO-XO, with an instrument specification very similar to TEMPO. To be addressed with WG-II.	

Ref	Target	Primary responsible for target in CGMS	Summary/highlights of progress	Overall Status
1.2.4	Work towards ensuring optimised <u>Hyperspectral</u> IR measurements from LEO and GEO orbits to improve time sampling, spatial and spectral resolution and timeliness of observations, including the deployment of HSIR instruments across the GEO ring as per WIGOS vision 2040;	WG-III, support from WG-II and ITWG	Analysis of the current plans and gaps required. Propose action on WG-II and ITWG Presentation by EUMETSAT at CGMS-52 WG-II, proposing a set of questions to be addressed by ITWG	
1.2.5	Work towards optimising the distribution of planned scatterometer missions across different polar and inclined non synchronous orbits to achieve the 6-hour sampling requirement of the WIGOS and resolve diurnal variations;		No plans exist to provide additional scatterometer orbits. Propose to remove from HLPP	

Ref	Target	Primary responsible for target in CGMS	Summary/highlights of progress	Overall Status
1.2.6	Work towards ensuring low frequency microwave imagery for all-weather SST and ice monitoring from at least 2 sun- synchronous orbits		Action on ESA to confirm CIMR mission under Copernicus (EU Funding Gate Milestone in June 2024)	

Ref	Target	Primary responsible for target in CGMS	Summary/highlights of progress	Overall Status
1.2.7	Establish observational requirements for microwave observations (sounder and imager) for NWP and precipitation and perform gap analysis against CGMS baseline. For precipitation, develop a benchmark to conduct comprehensive assessments of current and future scenarios for the CGMS baseline;	WG-III,-II, IPWG, ITWG. IESWG	IPWG: The quantitative precipitation community currently lacks a methodology to quantify the impact of a change to the satellite observing system (whether it be the current CGMS baseline, or some expansion of this in the future) upon the resultant global precipitation products. While the NWP community has established OSSE methodologies for quantifying the net +/- impact upon various forecast metrics, resulting from a loss of a satellite system or impacts expected from a new system, the precipitation community has no equivalent method to assess how satellites with varying quality and resampling rates would affect the overall accuracy of weather or climate products.	
			Several IPWG members have started to outline the steps needed to formalize such OSSE-like capability for global precipitation products. NASA and the US Dept. of Energy have proposed a simulation experiment to DOE that if funded, would create a prototype of the model output needed to support the satellite simulator and retrieval	

Ref	Target	Primary responsible for target in CGMS	Summary/highlights of progress	Overall Status
			 package. However, AI tools to perform fast radiative transfer simulations as well as generalized retrievals that use these simulations to train algorithms still need to be developed and require support from CGMS members. More importantly, it would be useful to assess which CGMS agencies would be interested in such a tool, as their application would be of the order of complexity of running OSSEs – which are neither free nor trivial to implement. ITWG: 	
			The observational requirements for microwave observations from the ITWG perspective have been outlined in a document provided as input to the CGMS Future Directions initiative, as requested by Simon Elliot. There has been a lot of activity in this area within ITWG, and the document summarises a wide range of OSEs and simulation studies that establish the requirements for a constellation of MW sounders. It highlights the benefit of complementary orbits with different overpass times and the continued significant	

Ref	Target	Primary responsible for target in CGMS	Summary/highlights of progress	Overall Status
			benefit expected in NWP from further MW sounders beyond the 3-orbit baseline.	
1.2.8	Work towards increasing geographical resolution and coverage for altimetry measurements, including very high latitudes;		Altimetry coverage for arctic sea-ice at very high latitudes is currently provided by R&D missions (CRYOSAT-2 and ICESAT) for which continuity is not currently assured. Action on ESA to confirm plans for the operational Copernicus mission CRISTAL (EU Funding Gate Milestone in June 2024).	

Ref	Target	Primary responsible for target in CGMS	Summary/highlights of progress	Overall Status
1.2.9	Advance the atmospheric Radio Occultation constellation, with the long- term goal of providing 20000 occultations per day on a sustained basis	WG-III,-II, IROWG	IROWG recommends targeting 20,000 globally distributed observations per day with uniform spatial and local time coverage, noting that both the equatorial and polar components of the COSMIC-2 mission are required for operational NWP. Recent studies show that substantial increases in NWP accuracy and climate monitoring utility are obtained for increases in the number of RO profiles to at least 20,000/day (corresponding to around 4 M bending angles per day), and beyond, not approaching saturation at 20,000 per day. The status remains unchanged: the target number of occultations will not be met with existing operational missions or those in the implementation stage. Current estimates for operational missions, including the COSMIC-2 equatorial mission, are for approximately 12,000 occultation profiles per day starting in 2022 with the launch of EPS-SG. However, only 5,500 are from satellites providing global coverage (EPS, EPS-SG, Feng-Yun and JASON- CS/Sentinel-6). The COSMIC-2 mission profiles are all	

Ref	Target	Primary responsible for target in CGMS	Summary/highlights of progress	Overall Status
			below about 40 degrees latitude. Source: WMO/OSCAR (courtesy of C. Marquardt, EUMETSAT).	
			IROWG: suggests adding the words "with uniform spatial and local time coverage" after "providing 20000 occultations per day".	
			Given the prevalence of commercial data, simply recommending 20000 occultations per day is not sufficient. The distribution has to be considered.	
1.2.10	Work towards operational 3D wind profile observations from space-based lidar;		EPS-AEOLUS follow-on planned by ESA and EUMETSAT	

Ref	Target	Primary responsible for target in CGMS	Summary/highlights of progress	Overall Status
1.2.11	Work towards operational infrared/µwave limb sounding for climate monitoring and NWP applications		No progress reported	
1.2.12	Move towards an operational space weather monitoring capability from the Lagrangian Point L-5	SWCG	 The need to expand to the L-5 orbit has been established by NOAA's NSOSA study, which noted the benefit of off-Sun-Earth axis solar observations. Space Weather cooperation between NOAA and ESA has been assigned, including instrument exchanges for Vigil and SWFO. Vigil is now approved, Phase C/D has started Propose to reflect L-5 Vigil in CGMS Baseline and consider priority achieved 	Achieved

Ref	Target	Primary responsible for target in CGMS	Summary/highlights of progress	Overall Status
1.2.13	Establish the operational framework for the provision of magnetometer data from LEO orbit;	SWCG	Operational need has not yet been demonstrated, but a clear interest has been stated in survey and from scientific community.	
1.2.14	Investigate continuous space weather observations from lunar orbit for terrestrial and future lunar space weather services as well as for heliophysics research, complementing the geostationary and L1 measurements.	SWCG	Lunar Gateway demonstration mission with ESA and NASA payloads under development for launch in 2024. NOAA MoA with NASA has been signed on SW services in support to future lunar operations. Service requirements to be assessed in the context of Lunar Pathfinder and Lunar Gateway missions	

Ref	Target	Primary responsible for target in CGMS	Summary/highlights of progress	Overall Status
1.2.15	Work towards auroral monitoring capabilities	SWCG	 ESA Aurora-D concept demonstration mission planned for 2027 launch, to be followed by a 4-satellite operational constellation for 2030 (TBC) CMA confirmed that Aurora monitoring observations are provided by the WAI instrument on FY-3D and -H 	Achieved
			WG-III and SWCG recommends to consider the target achieved (subject to data availability from WAI)	

Ref Target	Primary responsible for target in CGMS	Summary/highlights of progress	Overall Status
1.3 Ensure long-term continuity of OSCAR/Space as a primary tool to support the CGMS Risk assessment and the WMO Rolling Review of Requirements including gap analysis against observing system requirements for satellite data and make OSCAR/Space the primary repository for WIGOS satellite metadata records generated by CGMS operators	WG-III	 WMO Space Programme Office continued a successful developmet framework with a contractor for the OSCAR/Space technical maintenance. The recent development plan in 2022 resulted software release including a milestone to develop OSCAR/Space frequency recording to support Space Frequency Coordination Group (SFCG) in their interest of using OSCAR/Space as an information source. Also, data latency records are implemented in OSCAR/Space to support gap analysis especially for Space Weather application. The major miles stones in 2023 are to implement the WIGOS station identifiers for satellites and Common Code Tables C-5/8 recorded in OSCAR/Space. The main mechanism for the WMO Space Programme Office to collect the relevant information for the database content updating is through templates submitted to the OSCAR/Space Support Team (O/SST) members, usually two to three times per year. In addition, the similar request was sent to some non-CGMS members having their 	

Ref	Target	Primary responsible for target in CGMS	Summary/highlights of progress	Overall Status
			satellites in OSCAR/Space	
1.4	Assess impact and benefits of CGMS satellite missions	WG-III		
1.4.1	Support satellite impact studies, including in particular impact of data latency and the impact of the Early Morning orbit;		The preparation process for the next WMO impact workshop in May 2024 has started and CGMS has provided inputs to the science questions for the workshop, to ensure that impact of data latency is adequately addressed, but it is unclear how these questions have been taken into account in the workshop preparations.	
1.4.2	Develop capacity to assess socio-economic benefits of CGMS satellite missions;		To be discussed Remove from HLPP, SEB targets have (see below) been revised in the CGMS Future activity.	Remove

Ref	Target	Primary responsible for target in CGMS	Summary/highlights of progress	Overall Status
1.4.3	Collect and make available to CGMS members SEB case studies of relevant satellite systems for the purpose of identifying common practices in the next phase.	SEB Champion		
1.4.4	Explore with WMO and other agencies the possibility to develop a study on the SEB value of the space-based observing system responding to WIGOS 2040 in cooperation with CGMS, and to trigger collaboration with CGMS members;	SEB Champion		

Ref	Target	Primary responsible for target in CGMS	Summary/highlights of progress	Overall Status
1.5	Identifying partnership opportunities on space and ground segments and establish CGMS coordinated mechanisms;		Partnership on LEO ground segments being implemented by EUMETSAT and NOAA for Metop-SG and JPSS. It should be noted that this target applies strongly to the CGMS engagement in Space Weather and NOAA is actively pursuing Ground Segment partnerships for the SWFO-L1 mission.	
1.6	Relationship with the Private Sector	Private Sector Relations Champion		
1.6.1	Identify/evaluate potential or future commercial Earth observation technologies – and share information on pilots/testbeds etc. to evaluate new commercial Earth observation technologies.			

Ref	Target	Primary responsible for target in CGMS	Summary/highlights of progress	Overall Status
1.6.2	Assess the operational maturity of commercial observation technology.			
1.6.3	Develop best practices/templates for end user license agreements/procurements, for considering the value of public access and the additional costs of data sharing rights, including quality control considerations;			

Ref	Target	Primary responsible for target in CGMS	Summary/highlights of progress	Overall Status
2	COORDINATION OF SATELLITE SYSTEMS AND OPERATIONS	WG-I		
2.1	Coordination/Optimisation of data collection systems	WG-I		
2.1.1	Build on the work of the SWOT analysis on the DCS from geostationary meteorological satellites, and particularly progress on the five proposals for further work (covering RFI mitigation including creation of an RFI DCS register, joint DCS PR materials, DCS introduction video, manufacturer workshop, discoverable information);		The SWOT analysis has been completed. Further work building on the SWOT analysis outcomes is to be carried out, specifically work on the five proposals for DCS improvements based on the SWOT analysis, including work with RFI Task Group and DCS RFI register, DCS promotional materials presenting global view of DCS, improved DCS outreach via DCS introduction video, further work on EDCP standard, improvements to DCS user information across agencies.	

Ref	Target	Primary responsible for target in CGMS	Summary/highlights of progress	Overall Status	
2.1.3	Establish an enhanced DCP				Commented [KN1]: Under DCS, a point should be added on developing the use case for Smallsat.
	standard, taking into account		An EDCP standard proposal has been prepared for		
	requirements of tsunami alert		presentation to CGMS-52 WGI and Plenary. This includes		
	systems and in-situ ocean		a proposed implementation plan 2024 – 2027 and funding		
	observations (e.g. buoys) and		requirements. If endorsed by CGMS-52 WGI and Plenary,		
	lessons learned from the		the group will proceed as per the implementation plan.		
	development of high-rate DCP.				
	This would give agencies a common standard and would				
	once again allow international				
	use of DCPs. It is foreseen that				
	this would be covered under a				
	project with engineering work				
	spanning 2024-2027, which				
	would include the production				
	and testing of a prototype				
	transmitter;				
2.2	Radio Frequency (RF)	WG-I			
	Protection				Commented [KN2]: Reviewed/updated by Markus and Beau

Page 31 of 131

Ref	Target	Primary responsible for target in CGMS	Summary/highlights of progress	Overall Status
2.2.1	Facilitate an effective preparation of national and ITU-R regional groups' positions for the World Radiocommunication Conference (WRC) 2027 favourable for the CGMS- related issues, in particular but not exclusively with regard to the: - Establishment of protection for passive microwave sensors in the bands 50.2-50.4 GHz, 52.6-54.25 GHz and in bands above 86 GHz from unwanted emissions from active services in neighbouring frequency bands (WRC-27 agenda items 1.1, 1.3, 1.8 and 1.18);		 This topic needs to be kept in the HLPP for securing adequate information flow inside CGMS on national and regional level preparatory activities (as well as the dedicated report from SFCG activities provided by CGMS Liaison representative in SFCG) WG-I proposes this rewording to better reflect the situation after WRC WG-I at CGMS-52 to confirm that the text reflects well the CGMS priorities for WRC 27. 	Reworded

Ref	Target	Primary responsible for target in CGMS	Summary/highlights of progress	Overall Status
	- Possible new primary			
	frequency allocations to EESS			
	(passive) in the bands 4200-			
	4400 MHZ and 8400-8500			
	MHz for Sea Surface			
	Temperature (SST)			
	measurements to complement			
	the SST measurements in the			
	6/7 GHz range (WRC-27			
	agenda item 1.19);			
	- Protection of the frequency			
	bands 7450-7550 MHz, 7750-			
	7900 MHz and 8025-8400			
	MHz, used for the downlink			
	from MetSat and EO satellites,			
	from possible future frequency			
	usage by International Mobile			
	Telecommunications (IMT)			
	(WRC-27 agenda item 1.7);			

Ref	Target	Primary responsible for target in CGMS	Summary/highlights of progress	Overall Status
2.2.2	Within the general ITU framework, ITU-R Resolution 731 deals with the establishment of sharing conditions between active and passive services in bands above 71 GHz.		 WRC-23 corrected the inconsistencies in Resolution 731, by eliminating the possibility to study bands subject to RR footnote 5.340 (all emissions are prohibited) for sharing with active services. Subject to contributions to the relevant groups in ITU-R, responsible for the active and passive radiocommunication services involved, studies can now be put forward under this corrected Resolution 731 for any bands above 71 GHz, either for sharing in bands not subject to RR FN 5.340, or to determine the unwanted emissions to neighbouring 5.340 bands, that are not already covered by WRC-27 agenda items 1.1, 1.3, 1.8 or 1.18, see 2.2.1 above. WG-I proposes this rewording to better reflect the situation after WRC 	Reworded

Ref	Target	Primary responsible for target in CGMS	Summary/highlights of progress	Overall Status
2.2.3	Pursue the establishment of a set of best practices for the RFI detection, monitoring, and mapping based on the common aspects of the approaches already adopted by CGMS members;		The recently formed Task Group on RFI has proposed a set of draft Best Practices on RFI detection, monitoring, and mapping for review by CGMS-52 WGI. Further work on the Best Practices is planned in the lead up to CGMS-53.	
2.3	Data acquisition and data processing, including low latency data access	WG-I		

Ref	Target	Primary responsible for target in CGMS	Summary/highlights of progress	Overall Status
2.3.1	Ensure the ease of use of satellite-derived data and products, disseminate in one of the standard formats, as specified in the CGMS LRIT/HRIT Global Specification and the WMO Manual on Codes. Once the use of netCDF with the CF convention are captured in the WMO Manual on Codes, ensure compliance with this for satellite-derived data and products disseminated in netCDF.		 Work has progressed, see the status report provided by EUMETSAT on dedicated paper for CGMS-48, containing also the outcome of specific work achieved by the WG-I participants through dedicated Inter-Sessional meetings. A dedicated CGMS "liaison officer" agreed at CGMS-47. The role is to coordinate with the CF community to concentrate efforts and views of the different CGMS members aiming at contributing to the evolution of these standards by actively participating in the related CF meetings. Topic is proposed to be further developed through the Task Group of Satellite Data and Codes (TGSDC), which will interact with the CF Conventions Committee, the CF Standard Names Committee, and the CF Governance Panel 	

Commented [KN3]: Simon will provide proposed updates to Mikael/Karolina

Page 36 of 131

Ref	Target	Primary responsible for target in CGMS	Summary/highlights of progress	Overall Status
2.3.2	To address technical and operational aspects of direct low latency data access (present and future) of mutual or global interest for the CGMS agencies, including facilitating transition to new LEO systems.		The LLDA Task Group has performed and distributed a "Strengths, Weaknesses, Opportunities and Threats (SWOT) Analysis of Low Latency Data Access from LEO Meteorological Satellites. This SWOT analysis also contains an analysis on the potential role of satellite platform as a service (SPaaS). This SWOT analysis is planned to be maintained on a yearly basis by the LLDA task group to keep up to date with the space sector context.	
2.3.3	Merge the LEO (global) and DB (regional) best practices into a consolidated "Low latency best practices" containing common best practices for both regional and global missions, as well as specific best practices for direct broadcast and global missions.		A "Merge of LEO Direct Broadcast and Coordination of LEO Orbits Best Practices proposal" [CGMS-52-CGMS- WP-03] was produced for review by CGMS-52 WGI. The document would benefit from one further round of iteration inside the LLDA Task Group. Proposal is to publish the document by CGMS-53.	

 2.3.4 Develop efficient standardized data handling for high-resolution imaging and hyperspectral instruments The Task Group has worked with the WMO Secretariat and the WMO Expert Team on Data Standards (ET-Data) and its Task Team on Table Driven Code Forms (TTTDCF) on the development of a number of new BUFR encoding sequences and Common Code Table entries. In each case, the Task Group acts as a reference group of experts who are invited to consider and endorse relevant proposals going through WMO's approval process. Between CGMS 52 and CGMS 53, the Task Group on Satellite Data and Codes will continue work on coordinating format standardisation for satellite data. 	Overall Status	arget Primary responsib for target CGMS
		ta handling for high- solution imaging and
2.4 Coordination with WMO Information Systems (WIS) WG-I		

Commented [KN4]: Simon will have a look offline and propose updates

Page 38 of 131

Ref	Target	Primary responsible for target in CGMS	Summary/highlights of progress	Overall Status	
2.4.1	Actively ensure the WIS 2.0 usage for satellite data provision and discovery.		Ongoing.		Commented [KN6]: This will be updated by Simon after WGIV takes place. Commented [KN5]: This should be moved to WGIV
2.4.2	Support WIS and WIGOS in the definition of harmonised product metadata for satellite data and implement these for CGMS missions.				Commented [KN7]: This should be moved to WGIV

Page 39 of 131

Ref	Target	Primary responsible for target in CGMS	Summary/highlights of progress	Overall Status	
2.4.3	Provide coordinated CGMS inputs to WMO on satellite and instrument identifiers for data representation and metadata within the WIS		The Group continues to encourage WMO to ensure that OSCAR/Space includes references to the Common Code Table entries used for satellite identifiers (table C-5) and instruments (C-8). At the last OSCAR/Space workshop it was confirmed that these changes would be included in the forthcoming update to OSCAR/Space. Between CGMS 52 and CGMS 53, the Task Group on Satellite Data and Codes will continue work on implementation of WIGOS station identifiers for satellite platforms, and providing subject matter expertise to WMO Expert Teams.		Commented [KN8]: Done for C-5. Continuing for C-8.

Page 40 of 131

Ref	Target	Primary responsible for target in CGMS	Summary/highlights of progress	Overall Status	
2.5	Operational issues related to Space Weather				Commented [KN9]: We need to add an entry on Space Environment Sustainability.
2.5.1	Evaluate existing operational space weather products and services in support of CGMS members' spacecraft operations and recommend additional services as appropriate	SWCG	The WGI Space Environment Sustainability Task Group (with support from SWCG) has initiated steps to identify best practices in usage of space weather data by spacecraft operators and their goals for improvement. Outreach activities are being supported at space weather and operations workshops and specific user engagement / test- bed activities are on-going at ESA and NOAA.		The inputs can be taken from the WGI ToR, which has objectives for SES listed. This is aligned with the SSA Champion on STG Coordination points below.
2.6	Space Traffic Coordination	SSA Champion			
2.6.1	Review of CGMS member agencies' satellite operations for collision avoidance and re-entry prediction.				

Page 41 of 131

Ref	Target	Primary responsible for target in CGMS	Summary/highlights of progress	Overall Status
2.6.2	Perform a gap analysis between the needs and the available/used space traffic coordination (STC) services, carry out an assessment of service development prospects and prepare a proposal for best practises to support improvement.			
2.6.3	Engage with UN-COPUOS to achieve a global standardised approach for STC based on a CGMS proposal;			
2.7	Space sustainability	SSA Champion		
2.7.1	Share space sustainability rating methodologies and carry out a pilot project where some operational mission plannings are evaluated.			

Ref	Target	Primary responsible for target in CGMS	Summary/highlights of progress	Overall Status
2.7.2	Follow efforts to establish an international agency policy on "zero debris" and based on the outcome, carry out an assessment of impacts of such policy on operational missions of CGMS members and the private sector.			
2.7.3	Prepare a CGMS best practises document for long term space sustainability;			
2.8	CGMS satellite missions in hybrid space infrastructures	Hybrid Space Infrastructu re Champion		

Ref	Target	Primary responsible for target in CGMS	Summary/highlights of progress	Overall Status
2.8.1	Taking passive µwave sensing as an initial case, identify all current constellations, and those planned for the next few years (CGMS baseline, complementary systems, and potential data buys) and demonstrate the impact of CGMS contributions, as part of the integrated system.			
2.8.2	Address such aspects as orbit coordination and harmonised data access to ensure the different components of the hybrid space infrastructures provide a seamless operational service to the users.			
2.8.3	Conduct a critical review of WIGOS 2040 with respect to hybrid systems;			

Ref	Target	Primary responsible for target in CGMS	Summary/highlights of progress	Overall Status
2.9	New technologies for satellite			
	systems	Champion		
2.9.1	Assess the internet-of-things (IOT) technology for inter- and intra-connections between satellite and ground network.		 The internet-of-things (IOT) technology study found that IoT applications for LEO services and ground-based systems provide opportunities for CGMS agencies: GEO IoT can open new mode of operations for LEO meteorological satellites, such as TTMC LEO relay IoT can complement DCS in polar locations Direct broadcast remains a better value for money solution to GEO IoT for instrument payload downlink 	
2.9.2	Explore improvements to LEO satellite systems low latency data access from both a global and regional perspective, harnessing common emerging technologies and taking account of the evolution of the commercial and agency space systems;			

3	COORDINATED DATA ACCESS AND DIALOGUE WITH USER COMMUNITY	WG-IV	

3.1	Support the user-provider dialogue on regional/continental scales through regional coordination groups maintaining requirements for dissemination of satellite data and products through the various broadcast services;	Regional coordination groups on data requirements are now established in and	
		 RA I Dissemination Expert Group (RAIDEG) RA II WG-I Expert Team on Satellite Observations and Applications (ET- SOA) RA III/IV Satellite Data Requirements (SDR) Group RA V WG-I Expert Team on Satellite Utilization (ET-SAT) RA VI, TBD 	
		surveys in the Regions continue to useful for policy makers and CGMS members for satellite product development, data dissemination and user training.	

3.1.1	Establish a sustained interaction with the	The responsibility for the priority is	
5.1.1			
	operational nowcasting communities with a	between agencies and nowcasting	
	view to fully utilise the commonality of the	communities, not between Agencies.	
	future geostationary imagers and sounders.	However, it is recognized that Agency	
		interaction would facilitate further progress	
		and some activities are happening here as	
		well. Looking at some the key players with	
		key current and future capabilities it seems	
		this is progressing reasonably.	
		Whilst some interactions exist, also in the context of the EUMETSAT MTG IRS Mission Advisory Group, a sustained regular interaction across all CGMS members planning to launch geo-satellites with hyperspectral infrared capabilities has not yet been established. Focus of SCOPE- Nowcasting Pilot Project 1 in RA II (Asia) and RA V (South-West Pacific)	
		Note however that SCOPE-Nowcasting has been inactive since 2019.	

		Activity to be coordinated with WGII, no progress so far.	
3.2	Prepare operational users for new generation of meteorological satellites through user readiness programmes, with coordinated contributions from CGMS members	To be addressed by TG on User Readiness (not yet established)	

3.3	Coordinated global data exchange	To be addressed by Task Group on Data Access/Exchange (not yet established)	
3.2.3	Develop Best Practices for Operational User Notifications		
3.2.2	Improve the provision to users of characterisation data (including apodization) for geostationary and low Earth orbit hyperspectral infrared instruments.		
3.2.1	Consider the full range of user capabilities (ranging from advanced Short-range NWP to more conventional nowcasting) when planning data utilisation, products generation and dissemination strategies, in particular for the new geostationary satellites		

3.3.1	Develop Best Practices for Global Data Exchange		
3.3.2	Explore options for optimal data exchange of advanced data from new generation GEOs, in consultation with the global NWP centres through GODEX-NWP		
3.3.3	Support the coordination of the operational Digital Video Broadcast (DVB) satellite services for the Americas, Africa, Europe and the Asia Pacific regions;	The communication satellite broadcast systems GEONETCast Americas, EUMETCast, CMACast and HimawariCast are well established and coordinated systems, and no significant issues are observed.	
		Reporting on the broadcast systems were provided in CGMS-51 WG-IV meeting.	

3.4	Increase access to, and use of, data from	To be addressed by TG on Data	
	R&D and pre-operational missions	Access/Exchange (not yet established)	
		EUMETSAT, supported by CGMS	
		members, is actively increasing access of	
		such data to its member states, and to other	
		CGMS members through bilateral	
		arrangements.	
		It should however be noted, that the	
		bilateral agreements for R&D satellites do	
		not always allow unrestricted re-distribution	
		for operational use.	
		There are ongoing activities, no specific	
		issues reported.	

3.5	Investigate the feasibility of utilizing existing dissemination systems for meteorological information in helping to	Could be addressed by TG on Data Access/Exchange (not yet established)	
	mitigate disasters;	The utilization of existing dissemination systems for disaster mitigation purpose is well established but still has room for expansion.	
		The on-demand Rapid Scanning services of CMA, JMA and KMA are using existing dissemination systems for supporting disaster preparedness.	

3.5	Increase operational access to data and products in support to the ocean user	Ocean is addressed in the red dialogues, but there is a nee	ed for a better
	community;	dialogue with the global oc	ean community.
		The future mechanism for s	tructured
		dialogue between CGMS an	
		community is still to be def	ined.
		KMA has implemented an I	L-band Direct
		Broadcast service on GEO-	KOMPSAT-2A,
		providing meteorological an	nd marine data
		for reception by ships.	
		Even though there is still no	o coordinated
		interaction with this commu	
		the ocean user community b	
		evolutions in existing data a mechanisms.	
		To be addressed by TG on I	
		Access/Exchange (not yet e	established)

3.6.1	Ensure the timely access to and exchange of near-real-time scatterometer data, share access to calibration and validation information across CGMS agencies	To be addressed by TG on Data Access/Exchange (not yet established)	
3.6.2	Promote the product metadata standards within ocean communities, such as on SST, ocean colour, ocean vector surface wind and ocean surface topography, to facilitate common data representation and near-real time exchange. This must be done in dialogue with the relevant CEOS Virtual Constellations.	Could be addressed by the WG-I Task Group on Satellite Data and Codes?	

3.7	Application of Cloud Technologies	Cloud Champio n	Cloud Services Expert Group established and working well.	
3.7.1	Develop best practices for cloud services interoperability.			
3.7.2	One or more CGMS members to prepare demonstration of collaboration with private sector regarding satellite data distribution;			
3.8	Research to operations	R2O Champio n		
3.8.1	Collect the experience of each agency by carrying out a research-to-operations method survey with each agency including identification of research missions with a potential transfer to operations.			
3.8.2	Based on the results of the method survey, propose a consistent CGMS research-to- operations baseline process that includes flexibility and adaptability and facilitates the participation of R&D agencies;			

4	ENHANCE THE QUALITY OF SATELLITE- DERIVED DATA AND PRODUCTS	WG-II (Supported as appropriate by ISWGs and GSICS project)	Status below is provided based on information from the ISWGs that have met since last CGMS. A complete status of implementation of the proposed targets in the product area will be gradually established by WG-II, the ISWGs (during their cycle of meetings) and the GSICS project.	
4.1	Establish within GSICS a fully consistent calibration of relevant satellite instruments across CGMS agencies, recognising the importance of collaboration between operational and research CGMS agencies;			

4.1.1	Maintain within GSICS a framework for inter-calibration of hyper-spectral sounders;	GSICS	Implemented and provides input to the annual GSICS. observing system report. Interoperability within GSICS framework ongoing. GSICS to provide status	
4.1.2	Establish within GSICS a consistent inter-calibration for	GSICS	GSICS to provide update	
	thermal IR channels using hyper-spectral			
	sounders as reference. The implementation will			
	be done successively by the			
	individual satellite operators			

4.1.3	Establish a consistent inter- calibration for solar channels using instruments with adequate in-orbit calibration and vicarious methods as reference. The implementation will be done successively by the	GSICS	 The lunar irradiance and DCC (Deep Convective Cloud) have been suggested by GRWG as targets to transfer the NPP-VIIRS reference calibration for the solar reflective bands. The results have been demonstrated by most satellite agencies, the approach for implementation is still under discussion. It is imperative to stress the need to use the same solar spectrum for inter-comparing sensors based on radiance units. The MODIS, NPP-VIIRS, and N20-VIIRS sensors use the Neckel&Labs, MODTRAN 4.3, and Thuillier 2003 solar spectra, respectively. The GSICS-recommended NOAA 	
	individual satellite operators.		NPP-VIIRS V2 calibration reference will use the Thuillier solar spectrum. This multiplicity is confusing. The GSICS VIS/NIR and UV groups have tasked the CU/LASP solar group to prepare a paper (contact: Peter Pilewskie <u>peter.pilewskie@lasp.colorado.edu</u>) to establish a high resolution solar reference spectrum anchored to the newly launched ISS/TSIS-1 sensor. This will be in coordination CEOS WGCV IVOS group.	

4.1.4	Establish a common	GSICS	Ongoing	
	reference solar			
	spectrum with			
	appropriate spectral			
	coverage and			
	spectral resolution			
	and develop			
	common methods			
	and tools for on-			
	ground calibration			
	and characterisation			
	and inter-calibration			
	of UV-VIS- NIR			
	SWIR spectrometers			

4.1.5	Establish a	GSICS		
	methodology to		IPWG asked for confirmation that GSICS also addresses	
	characterise		µwave imagers. GSICS has confirmed this and is discussing	
	microwave		to invite JAXA for a discussion on µwave intercalibration.	
	instruments for O2			
	absorption channels			
	through the SNO			
	and RTM			
	modelling. The			
	implementation will			
	be done			
	successively by the			
	individual satellite			
	operators;			
4.1.6	Establish	GSICS		
	mechanisms for		There have been discussions in MW Subgroup on	
	cross-calibrating		scatterometer inter-comparison and Xiaolong Dong	
	scatterometers		summarized these in	
	across the			
	constellation.		http://gsics.atmos.umd.edu/pub/Development/Annualmeeting2022/CE	
			OS_MW_Activities_GSICS20220317.pptx	

4.2	Establish		
	commonality in the		
	derivation of		
	satellite products		
	for global users		
	where appropriate		
	(e.g., through		
	sharing of		
	prototype		
	algorithms);		

4.2.1	Establish commonality in the derivation of AMV products for global users where appropriate (e.g., through sharing of prototype algorithms) and	IWWG	Implementation of new AMV BUFR sequence and Common QI by space agencies is partially completed NOAA, EUMETSAT, KMA and the NWCSAF/HRW have implemented the use of a new AMV BUFR sequence. EUMETSAT, NOAA, KMA, JMA and the NWCSAF/HRW have included the Common QI into their algorithm repositories	
	consider backwards compatibility when designing AMV algorithms for the 16-channel imagers, so that present state- of-the-art algorithms can be applied to old imagery.		4th AMV Intercomparison was completed and results were presented at IWW16. Brazilian Weather Forecast and Climatic Studies Centre (CPTEC/INPE), EUMETSAT, Japan Meteorological Agency (JMA), Korea Meteorological Administration (KMA), National Oceanic and Atmospheric Administration (NOAA) and NWCSAF participated and contributed AMVs datasets. UW-Madison/CIMSS (Dave Santek) and NWCSAF (Javier Garcia-Perreda) performed the analysis and reported to IWWG. The 5th AMV Intercomparison is yet to be coordinated and planned in time for the 17th IWW in Spring 2025	

4.2.2	Investigate the best configurations to be used by the AMV producers for use in global and regional NWP models respectively, and clearly define the appropriate requirements for each of them;	IWWG	distributed during the with Glob document updated ba discussed a The 16th I	ent created by Mary Forsythe (Met Office) to the IWWG NWP community was discus 16th IWW. No changes were proposed to the tak bal and Regional NWP recommendations. remains a living document and will be periodic used on the latest scientific information received at each IWW. WW discussion recognised the merits of a centrali FAMV production to support regional models.	
			Timeline ss	Important as data later in the window has the most impact.	
			Target size and image interval	Best to generate AMVs with target size and interval whi is optimal for the best AMV product. NWP centres can superob data, if necessary, to the resolution which is optimal for NWP. Based on recent studies this might be ~ 16x16 pixels with ~10 min interval (where available)	

Grid size	Should avoid overlapping targets (to reduce correlate error). There is an open question as to whether NWP centres might benefit from maximising density after allowing for this constraint as it gives flexibility to use da at higher density in regions of interest and the potential reduce random error through superobbing. However, there is a cost/benefit trade-off: the cost of production/storage/processing of increased volumes versus the currently unknown benefit to NWP.
Temporal frequenc y	Many centres assimilate data hourly in NWP so this seems like a sensible target, however, increased frequency can help to fill the spatial gaps. <i>It may be use</i> <i>to have the data every half hour</i> , perhaps even more often. However, note caveats re cost/benefit trade-off above. May benefit from enhanced spatial/temporal products for critical events such as storms.
Derivatio n settings	Are there any other changes that could help to improve the spatial coverage without impacting too much the quality of the winds? Novel optical flow retrieval is potentially one option.
Derivatio n informati on	Access to information from the derivation that might hav skill for NWP quality control. This might include information on the correlation surface (for confidence in tracking) as well as information from the cloud analysis and height assignment steps. Request made for standardised cloud type to be made available.

	Regional NW	Ρ.	
	Timeliness	Critical. Some regional models cannot use data old	
	Target size and image interval	Likely want a higher resolution product than for glot will be optimal. Might be worth trying 16x16 and s both 10 min and 5 min intervals (where available) approaches to reduce noise (averaging correlation filtering). Produce AMVs from high resolution chanr	r what with ring, (m).
	Grid size	Ideally set grid size to avoid overlapping targets, bu the better. TBC if density is sufficient without overla SAF / HRW could be used to explore. May want to	more NWC on.
	Temporal frequency	Probably want winds produced every 10/15 min – s the spatial coverage even if we thin or superob to o correlated error. May benefit from enhanced spatial critical events such as storms. May be useful for N	nprove to icts for iters.
	Derivation settings	Are there any other changes that could help to improve coverage without impacting too much on the quality	
	Derivation information	Access to information from the derivation that migh NWP quality control. This might include informatior surface (for confidence in tracking) as well as inforr analysis and height assignment steps. Request ma	ll for ion cloud sed

		cloud type to be made available. Improving the error particularly important for initialising the smaller scal		
	NWP usage	A particular challenge is how to benefit from the hig information without hitting the system too hard due We may want to consider back-and-forth nudging a approaches in NWP.	r	ors. onal

4.2.3	Assess value of derivation of winds from GEO Hyperspectral IR	IWWG	The potential of 3D winds extracted from Hyperspectral IR sounders can be estimated from existing demonstration 3D AIRS/CrIS (CIMSS/NOAA/NASA) and 3D IASI winds (EUMETSAT) that can be made available to the user community. For a better estimation of 3D winds from a
			Geostationary Hyperspectral IR sounder instrument, NOAA is discussing the possibility of generating 3D AMVs from GEOS-5 for use in OSSEs.
			Feng Lu (CMA) will update the community at the IWW16 on the status of 3D AMVs from the Geostationary Interferometric Infrared Sounder-2 (GIIRS-2) on FY-4B.
			EUMETSAT's 3D IASI AMV processor is fully developed. Production of a demonstration dataset is ongoing. Three months of data (Jan-Mar 2023) covering both North and South high latitude regions (poleward +/- 45 degrees) can be made available to the user community upon request.
			While not a GEO application, CIMSS, University of Wisconsin - Madison has a new funding start that will demonstrate the feasibility of tracking features in global profile of retrievals of humidity and ozone derived from AIRS and CrIS radiances on Aqua, NOAA-20, and NOAA-21 (and possible SNPP). Retrieval products will be generated using

-			-	
			the Dual Regression (DR) method that derives atmospheric profiles, surface parameters, and cloud properties simultaneously under clear and cloudy conditions from any of the current hyperspectral infrared (IR) sounders at single field-of-view (SFOV) resolution. With three CrIS and one AIRS instrument flying in the afternoon orbit, time sequences of these global humidity and ozone profile fields enable feature tracking to determine atmospheric motion vectors (AMVs). Tracking features in retrieval fields rather than in the radiance images enables estimation of wind profiles at retrieval determined heights. This approach has been demonstrated from the successive AIRS overpasses in polar regions, but now can be tested globally.	
4.2.4	Establish a coherent development of volcanic ash products and applications with close user community coordination;	WG II	 WG II will discuss the way forward for Ash Product development, updated intercomparisons and definition of suitable parameters for end user applications with SCOPE-NWC, IAW and ICAO." Action on WMO. WG-II to comment 	

4.0.5		IGNIC	LOWIG	
4.2.5	Assess the cloud	ICWG	ICWG:	
	properties generated			
	from the		While ICWG-3 did not include a cloud property	
	geostationary and		intercomparison effort as was done in past meetings, it was	
	polar orbiting		agreed that an intercomparison/assessment of contributed	
	imagers and pursue		cloud products is a high priority for the next ICWG-4.	
	best practices that			
	lead to improved		Moreover, it was decided that this effort will use the new	
	consistency and		ISCCP-NG L1G dataset as the common input for all	
	accuracy across the		participating algorithms.	
	globe and the			
	Geostationary ring;		The use of the ISCCP-NG L1G serves a two-fold purpose –	
			it provides a common	
			framework for evaluating a variety of cloud algorithms, and	
			it enables an evaluation	
			of the L1G datasets themselves via assessments of retrieval	
			performance on these	
			inputs. The latter provides a pathway for ICWG to provide	
			feedback to the ISCCPNG/GeoRing development effort.	
			The ICWG ISCCP-NG Topical Group will coordinate these	
			intercomparison efforts and liaise with the L1G development	
			community.	

4.2.6	Establish together	ITWG	ITWG status:	
1.2.0	with the user			
	community a		After ITSC-24, the following statement was received from	
	commonly agreed		Tim Hultberg (EUMETSAT) on the Hybrid compression of	
	approach for		IASI spectra:	
	retrieval of Principal		n isi speeda.	
	Component scores		- As for "feedback from users" we did two parallel	
	and associated		studies: https://www.eumetsat.int/use-iasi-	
	parameters from		reconstructed-radiances-acaq-retrievals (only one of	
	hyperspectral		the two "final reports" is currently available from this	
	infrared data,		page, but we have the other and it should be added to	
	minimizing		the web soon)	
	information loss		,	
	including the		- The local part of the hybrid is only relevant for very	
	mutually acceptable		unusual situations and small trends in the bias from	
	update strategy for		reconstruction; we don't use it in EUMETSAT	
	the principal		product generation. But we do (since 30th of March	
	component basis		2023) use the global PC scores from the new PC basis	
	and to implement		(v2.01) with full noise normalisation matrix.	
	such an approach in			
	a coordinated		Dave Tobin (NOAA/SSEC) reported the following:	
	manner.			
			On the CrIS side of things, we developed the PC product and	
			did internal (internal to the CrIS SDR calibration team)	
			assessments, but when it came time to make it into an	

official product, the JPSS project decided that they did not have any "user requirement" or user requests for the CrIS PC product, and so we did not proceed to making an official product supplied to users. So, no real user feedback. More recently, we have some interest in the CrIS product from the GeoXO GXS project, and will continue with the project and provide products. So, maybe some feedback in the ~1 year time frame. At the conference, users were encouraged to get in touch with Dave if they were interested to test the data.
 Update as of March 2024: NOAA is considering a proposal to continue development and demonstration of PC products for JPSS CrIS SDR radiance data, as well as for future hyperspectral microwave data. Sample Hybrid PC data based on the NASA CrIS L1B radiance data will be available in the next weeks via the NASA GES DISC. The GeoXO GXS project is currently planning for a PC product, with details to be defined, to be the primary product (opposed to raw radiances), similar to the path used for MTG-IRS.

4.3	Foster the		
	continuous		
	improvement of		
	products through		
	validation and		
	inter-comparison		
	through		
	international		
	working groups		
	and SCOPE-type		
	mechanisms;		

1 2 1	A malay the IDWC	IDWC	The Couth Kannen validation website is up and moving It	
4.3.1	Apply the IPWG	IPWG	The South Korean validation website is up and running. It	
	validation protocol		has been presented to the IPWG community during one of	
	(as defined on its		the virtual sessions IPWG did hold in 2021.	
	web page) to			
	precipitation		The sites, some of which are still operational, see relatively	
	combination		little traffic because validation statistics are not uniform	
	datasets generated		across sites, and it is nearly impossible to distinguish	
	using multiple		differences due to weather regimes from differences in the	
	satellite and in-situ		quality of validation data.	
	data sources, and		quality of variance and	
	expand the number		IPWG thus focusing on Baseline Surface precipitation	
	of participating		Network. Working with WMO their Inter-Program Expert	
	agencies to broaden		Team on Operational Weather Radars. Pekka Rossi is the	
	the validation		coordinator. Daniel Michaelson is the current chair.	
	domain. The		Already, the US, Korea and Japan appear ready to contribute	
	IPWG website is		data. Will focus on this at IPWG-11 to increase participating	
	currently being		sites. Requirements are:	
	transitioned, and			
	will be updated to		• Radar with rain gauges for approx. 1 year	
	reflect the status of		• A PI willing to verify quality of the product	
	previous, current			
	and newly added			
	operating validation			
	regions			

4.3.2	Provide a SCOPE- CM Implementation Plan following the agreed new concept;	WG II	WP on SCOPE-CM phase III will be discussed at CGMS-48. A small task team composed of representatives from NOAA, EUMETSAT and WMO have considered the way forward for SCOPE-CM and proposes to conclude all Phase-II activities and then adopt a new approach for SCOPE-CM, i.e, to focus on production of CDRs responding to gaps identified by JWGClimate. WG-II supported this proposal, which then will be detailed with updated strategy, Agenda and Terms of Reference for SCOPE-CM.	
			Remove from HLPP WG-II to comment	

		1		
4.3.3	Conduct an inter-	ITWG	At ITSC-23 NOAA (Tony Reale) presented "Enterprise	
	comparison study		Comparison of Atmospheric Profiles Derived Polar Satellite	
	between the		and GNSS Constellations ". The presentation described the	
	different methods to		features of the NOAA Products Validation System	
	derive level 2 data		(NPROVS).	
	from infrared			
	hyperspectral		NPROVS routinely compiles daily datasets of collocated	
	sounders,		radiosonde, dropsonde, numerical weather prediction (NWP)	
	recognising that		and satellite sounding product observations. These datasets	
	there are several		are sub-divided for Conventional and Special radiosonde	
	software packages		observations. These collocations are primarily used to	
	available utilizing		monitor satellite derived soundings from multiple product	
	AIRS/IASI/CrIS		suites and support of scientific algorithm development.	
	data.			
			NPROVS supported satellites, sensors, and products relevant	
			to this comparison include:	
			S-NPP and NOAA-20: CrIS/ATMS NUCAPS/HEAP from	
			NOAA	
			MetOp-B/C: IASI/AMSU NUCAPS/HEAP from NOAA;	
			IASI Level 2 from EUMETSAT	
			Aqua: AIRS Level 2 from NASA	
			Results comparing NOAA (NUCAPS), EUMETSAT	
			IASI L2, and NOAA (MiRS) MW-only soundings	

 Results comparing GNSS COSMIC-2 versus GRAS retrievals were provided; mismatch among these data is larger (than for polar satellites) lending moderate confidence. Overall, enterprise assessment differences among polar satellites appear larger (despite smaller mismatch) than for GNSS. NPROVS data, results, and documentation are available at https://www.star.nesdis.noaa.gov/smcd/opdb/nprovs/ No updates from ITSC-24 		 retrievals were provided; mismatch among these data is larger (than for polar satellites) lending moderate confidence. Overall, enterprise assessment differences among polar satellites appear larger (despite smaller mismatch) than for GNSS. NPROVS data, results, and documentation are available at https://www.star.nesdis.noaa.gov/smcd/opdb/nprovs/ 	
---	--	---	--

4.3.4	Coordinate and	ICWG	Link between ICWG and SCOPE-Nowcasting has now been	
	improve the use of		established, through the SCOPE-NWC lead Mike	
	cloud properties in		Pavolonis/NOAA	
	the high impact			
	applications, in		ICWG:	
	particular			
	Atmospheric		A representative from the IWWG attended ICWG-3 and	
	Motion Vectors and		presented an update on IWWG activities.	
	All-Sky Radiance			
	Products .		ICWG agreed to coordinate with IWWG on the ISCCP-NG	
			cloud property	
			intercomparison planned for ICWG-4, specifically to include	
			in the	
			intercomparison IWWG golden days such that cloud-top	
			properties can be	
			provided to the AMV community for evaluation.	

4.3.5	Support the	ICWG	ICWG to comment	
т.5.5				
	continued analysis			
	and growth of the			
	cloud climatology			
	assessment data			
	archive initiated by			
	GEWEX and the			
	coordinate the			
	development and			
	assessment of cloud			
	climate products for			
	the next generation			
	of the International			
	Cloud Climatology			
	Project (ISCCP-NG)			
4.4	Maintain, enhance			
	and improve the			
	methods to			
	describe the error			
	characteristics of			
	satellite data and			
	products.			

4.4.1	Establish a common vocabulary and methodology with appropriate error propagation to include the errors associated with validation data (e.g. radiosonde temperature, water vapour, precipitation and winds).	ITWG, ICWG	ITWG: From the ITWG International Issues and Future Systems Working Group, the last action on this topic was for Christoforos Tsamalis (Met Office) to provide input to Mikael Rattenborg. This was completed and reported at ITSC-22. No updates are available following ITSC-23. From the ITWG Climate Working Group, this topic was discussed at ITSC-23 in the context of allowing users to better understand and trace uncertainties when interpreting long time series (e.g., ECVs). It was noted that when reporting climate trends, the climate community addresses statistical uncertainties in trends associated with the lengths of observations and magnitudes of variability in time series. On the other hand, the satellite CDR community addresses calibration uncertainty, or stability, of time series in trend detection. This led to a new recommendation from the Climate Working Group as shown below. Recommendation Climate-11 to satellite data product developers: Report statistical uncertainties No updates from ITSC-24 ICWG:	
-------	---	------------	--	--

ICWG recognizes the challenges associated with validating/evaluating remote sensing retrievals, particularly those retrievals of cloud properties for which no direct ground truth is available.	
ICWG-3 featured discussions on such validation efforts, including presentations on, e.g., liquid cloud microphysics retrieval evaluation using different in situ cloud probes that provide differing information on droplet size distributions.	
While no consensus was achieved, it is expected that discussion on validation efforts and associated errors will continue at ICWG-4.	

r	1	1		
4.4.2	Agree on	ITWG, ICWG	ITWG: At ITSC-23 the ITWG International Issues and	
	standardized		Future Systems working group noted that a recent paper by	
	procedures to derive		Yang and Yang is currently under review, and this includes	
	NedT estimates for		comparisons of different NedT algorithms (Yang and Yang,	
	microwave		2021, "A New Algorithm for Determining the Noise	
	sounders, and		Equivalent Delta Temperature of In-orbit Microwave	
	include such		Radiometers", IEEE Transaction on Geoscience and Remote	
	estimates in the		Sensing).	
	disseminated BUFR			
	data.		The group reiterated that websites with timeseries of	
			instrument performance indicators such as the	
			NOAA/NESDIS ICVS (Integrated Calibration/Validation	
			System) monitoring are an invaluable resource for data	
			users, including for NWP and reanalysis applications. The	
			group would greatly appreciate such monitoring to be	
			available from other space agencies.	
			The view from the NWP/DA working group was this:	
			There was a general feeling in the WG that the timeseries of	
			NedT estimates is very useful, as it allows users to identify	
			when changes to the instrument occur. In particular websites	
			showing the time series can be very helpful in making	
			decisions on instrument/channel rejection. This is not just a	
			requirement for short-range NWP; timeseries spanning the	
		1	requirement for short-range rever, timescries spanning the	

lifetime of instruments can be useful to reanalysis applications. With regards to consistency in the method used to estimate NedT, it was pointed out that it is not always possible to perform the calculation in the same way for all instrument types. Consequently it was felt that we modify the recommendation previously DA/NWP 23-8 to reflect this. The following two new standing recommendations were made. Recommendation DA/NWP - Standing 13 to Data Providers: Provide NedT estimates for inclusion within BUFR for microwave data. Recommendation DA/NWP- Standing 14 to Data Providers: Make NedT estimates from microwave instruments available as time series on publicly available websites to enable monitoring of instrument health in near real time. Joerg Ackerman who was unable to attend the meeting requested that the WG make the following additional recommendation DA/NWP- Standing 15 to Instrument Developers: Pre-launch calculation of NEdT should use the same algorithm as will be used in-orbit using warm target counts variability divided by the instrument gain	
--	--

		In general, this has been discussed for a long time by the DA/NWP Working Group now; we have the standing recommendations and given the long list of items needing discussion there is unlikely to be any further input from that working group. Based on the standing recommendations, it is proposed to consider this HLPP item for closure	
4.5	Strengthen		
	interaction with		
	users in selected		
	thematic areas by		
	establishing a close		
	relation with them		
	as beta-testers and		
	foster optimum use		
	of satellite data.		

4.5.1	Report on the progress within the Nowcasting community toward the use of hyperspectral sounders and work toward common products to serve the requirements of the global community.	WG II	The value of hyperspectral infrared has been discussed at the EUMETSAT Nowcasting Workshop in 2017 follow up with a report that was prepared in 2018 and update in 2019 by Hazardous Weather Testbed group. In addition, FY- 4A/GIIRS has been launched and data is now available routinely and with sufficient quality to explore the value of the data in Nowcasting. At the joint WG II/III session OSSEs for Assessment of Hyperspectral Infrared Measurements from Geostationary Orbit was presented by NOAA. In addition, EUMETSAT has been using polar orbiting data to demonstrate the potential value of hyperspectral IR from GEO. Report from NOAA will be provided at WG-II. EUMETSAT relevant reports at https://www.eumetsat.int/severe-storm-forecasting-lab WG-II to comment	
-------	--	-------	--	--

4.5.2	Enhance the use of	IPWG	A session on "Training and outreach on satellite-based	
7.3.2	satellite		products to monitor weather, climate, and extreme events"	
	precipitation		was successfully coordinated at CSU/CIRA in Fort Collins,	
	datasets through an		CO US in June 2022 during the IPWG-10 workshop. In	
	IPWG-led user		addition, IPWG members have actively participated in the	
	workshop where		online Satellite Precipitation Applications Workshops co-	
	training on		organized with the GPM application group, and with the	
	visualization and		GPM Mentorship Program. Further training events are	
	analysis tools will		planned during the IPWG-11 workshop, to take place in	
	be one of the topics.		Tokyo, Japan in July 2024.	
4.6	Foster and support			
	research regarding			
	enhanced radiative			
	transfer			
	capabilities,			
	recognising the			
	paramount			
	importance of			
	radiative transfer			
	developments for			
	satellite products			

4.6.1		ITUC		
4.6.1	Continue support for	ITWG	Following ITSC-23 the ITWG Radiative Transfer and	
	line-by-line (LBL)		Surface Modeling Working Group provided the following	
	reference model		information about specific requests for support.	
	development and			
	enhanced		LBL modeling	
	characterization of		1. Continuous support for line-by-line modeling should	
	spectroscopy to		be guaranteed. The community needs the development	
	ensure that product		of competing line-by-line codes. There are concerns	
	development teams		that line- by-line models are not flexible enough to	
	and users of level 1		accommodate the use of line parameters from	
	data have access to		alternative databases. For instance, LBLRTM uses	
	the latest updates in		line mixing coefficients that are not compatible with	
	LBL forward		the GEISA line parameters because the LBLRTM line	
	modelling and the		mixing coefficients are based on HITRAN line data.	
	uncertainties		2. Although the semi-empirical MTK_CKD model is	
	involved.		perhaps adequate for many applications, there is still	
			the need for a physically based representation of the	
			water vapour continuum absorption which should	
			eventually be implemented in state-of- the-art LBL	
			models.	
			3. Further research is needed into the modeling of line	
			mixing processes for CO2, CH4, N2O and to a lesser	
			extent water vapor. This is especially true for the $4\mu m$	
			absorption band of CO2.	

 4. The effects of pressure and Doppler line broadening should be modelled using a better representation of the line shape than the Voigt profile. Proposed replacements to the Voigt profile will require different broadening coefficients for all the molecules and consequently the need for significant updates to LBL models. 5. To allow the exploitation of spectral regions affected by non-LTE effects, it is important that these effects are accurately represented in LBL codes. In parallel, efficient representations of non-LTE effects should also be sought for implementation in fast RT models. 	
 Spectroscopy A strong emphasis should put on the continuous support of theoretical and laboratory spectroscopic studies. It is crucial that a compilation of basic line parameters is maintained. It should be assessed if there is a requirement to introduce more molecular species, including isotopes, and understand what accuracies are required. 	
 3. It should be assessed if there is any requirement regarding the precision of the spectroscopic parameters 	

	5. 6. 7.	 Using the synergy between the IR and the UV/Vis some inconsistencies have been observed in the retrieval of ozone profiles which could attributed to an inconsistency of the precision of the spectroscopic parameters between the 2 spectral ranges. Inconsistency problems have also been observed for SO2. Promote research into spectroscopy of higher frequency microwave channels up to 664GHz. Line shapes of water vapor broadening for trace gases need improvement. Regarding the database of cross sections, in general, we have access to the absorption coefficients for a set of pressure and temperature. The experience gained with IASI suggests that we should address the following points: a) The number of temperature and pressure values available in databases may not be sufficient to ensure that the error made when interpolating to the actual temperature and pressure is smaller than the noise of the instrument. b) Even if the spectral variation is low, cross section measurement have not been done using the best spectral resolution (especially in the 	
		center of the absorption band).	

Some measurements have been done with an	
instrumental noise which was too high resulting	
in negative absorption coefficients.	
in negative absorption coefficients.	
Spectroscopic databases	
The present status of the atmospheric databases is the result	
of numerous studies performed during the last 20 years in	
several dedicated spectroscopic laboratories all over the	
world. International cooperation contributed to the	
establishment of a number of spectroscopic databases for	
atmospheric applications. These include:	
GEISA under the responsibility of N. Jacquinet-	
Husson and R. Armante from LMD, Palaiseau,	
France. The last update has been done in 2011	
(Jacquinet-Husson, N. and others, 2011), the next one	
is planned for the end of 2015.	
HITRAN under the responsibility of Phillips	
Laboratory, Cambridge, USA (Rothman et al., 2013).	
MIPAS specifically dedicated to satellite experiments	
in the Earth's atmosphere (Flaud, 2003).	
BEAMCAT, for millimeter and sub-millimeter wave	
propagation in the Earth's atmosphere (Feist, 2004).	
 JPL Catalog (Pickett et al., 1998) of microwave to 	
sub-millimeter transitions. It mostly contains	
rotational transitions of a few hundred molecules	

which can be potentially observed in the Earth's	
atmosphere or in the atmosphere of other planets. It	
also features molecules present in the Inter Stellar	
Medium (ISM) or in Circum Stellar Envelopes (CSE)	
of late type stars. It comprises a small, but increasing,	
number of entries for infrared transitions.	
• CDMS Catalog (Müller et al., 2001, 2005). Like the	
JPL catalogue, it mostly contains rotational transitions	
of molecules important for the ISM or CSEs. Some of	
the molecules are of course also relevant for	
application in Earth's atmosphere or in the atmosphere	
of other planets and a number of entries are for	
infrared transitions of such molecules.	
Of all the databases listed above, GEISA and HITRAN are	
of primary importance for data assimilation. Finally, the	
VAMDC consortium (http://www.vamdc.eu/) aims at being	
an interoperable e- infrastructure that provides the	
international research community with access to a broad	
range of atomic and molecular data.	
Overall status at ITWG in Q1/2024	
Over all status at 11 vv O III Q1/2024	

Following ITSC-24, the ITWG Radiative Transfer and
Surface Modeling Working Group reported:
1. The NWPSAF Technical report "Literature Review on
Microwave and Sub-millimetre Spectroscopy for MetOp
Second Generation" (2022) by Turner, E., Fox, F., Mattiolo,
V. and Cimini, D was highlighted to be an important
reference material (https://nwp-
saf.eumetsat.int/site/download/members docs/cdop-
3 reference documents/NWPSAF report submm litrev.pdf
2. The need for a characterization of model biases and
uncertainties in key spectroscopic parameters.
3. The need to map spectroscopic uncertainties into radiance
uncertainties.
4. Encourage comparison studies in model and/or laboratory
spectroscopic measurements. In this regard, it is
recommended to work more closely with the
planetary/astronomy community for knowledge of LBL /
spectroscopy information.
5. Continuous support of theoretical and laboratory
spectroscopic studies. A compilation of basic line parameters
must be maintained.
6. Recommends promoting research regarding the
spectroscopy of higher frequency microwave channels up to
1000 GHz (specially the H2O lines in the sub-mm range of
1000 OTTZ (specially the 1120 lines in the sub-linit lange of

particular importance for the upcoming launch of ICI	
onboard Metop-SG).	
7. Continuous support of FAR-IR model developments in	
preparation for future missions (sigma-IASI - FORUM	
model, or FIREX requirements).	
8. The importance of maintaining the Rosenkranz MW/sub-	
mm model as there are concerns it might become	
discontinued.	
9. There are raised concerns regarding the LBL needs in	
hyperspectral MW missions.	
10. Recommends maintaining the last LBLRTM version	
upon the release of the Community LBLM (CLBLM) model.	

	1			
4.6.2	Perform validation	ITWG	At ITSC-23 a presentation was given by Thibault Delahaye	
	and intercomparison		(Laboratoire de Météorologie Dynamique/IPSL) et al. titled	
	of LBL		"CO2 spectroscopy in 4A/OP: new developments and	
	models/spectroscop		applications to satellite missions".	
	y to assess the			
	impact of		This presentation described the development and validation	
	spectroscopic		of a new CO2 full line-mixing algorithm and software	
	uncertainties and the		package. This is required by missions including IASI in	
	differences between		order to retrieve CO2 concentration by inversion of infrared	
	line-by-line and fast		spectra using radiative transfer-based algorithms. This	
	radiative transfer		method fundamentally relies on the precision of CO2	
	models.		molecular spectroscopy knowledge. The authors presented	
			the status of the CO2 spectroscopy and its implementation	
			and validation in the radiative transfer software 4A/OP.	
			Following ITSC-24, the RTSP Working Group emphasizes	
			the significance of intercomparison studies to refine the	
			accuracy and reliability of fast atmospheric radiative transfer	
			models. In this context, the Community Radiative Transfer	
			Model (CRTM), Radiative Transfer for TOVS (RTTOV),	
			and Advanced Radiative Transfer Modeling System	
			(ARMS) are highlighted as crucial components in the	
			broader effort to advance atmospheric modeling capabilities.	
			broader enor to advance atmospheric modering capabilities.	

The RTSP Working Group advocates for a strategic	
inclusion of these models in benchmarking exercises against	
more accurate (but much slower) counterparts like	
kCARTA, LBLRTM, and CNR/Florence Klima LBL. By	
engaging in such comparative analyses, the aim is to	
leverage insights gained to drive enhancements in these fast	
models, ensuring they remain at the forefront of radiative	
transfer modeling capabilities for operational and time-	
constrained applications.	

[1	1	
4.6.3	Through	IPWG, ICWG, ITWG,	IPWG comments:	
	coordination	IESWG		
	between IPWG,		This is always an ongoing topic and challenge, but we are	
	ITWG and ICWG,		pleased to report some headway. IPWG has established a	
	continue to improve		Focus Group on Particle scattering led by Guosheng Liu	
	microwave radiative		(FSU). The goals of the group is to create greater community	
	transfer models to		understanding of the state-of-the-art research and to	
	include complex		communicate available tools to the broader precipitation	
	surfaces (e.g., snow,		community. It has also created a Land Surface FG led by	
	desert, etc.) and		Sarah Ringerud (GSFC) and Joe Turk (JPL) The goals of the	
	scattering		group is to create greater community understanding of the	
	atmospheres (e.g.,		state-of-the-art research in this area to facilitate future	
	frozen		improvements. These focus groups should be inter-	
	hydrometeors) to		disciplinary.	
	support improved			
	algorithm		Overall status at ITWG in Q1/2024	
	development for			
	current and future		Following ITSC-24, the ITWG Radiative Transfer and	
	sensors.		Surface Modeling Working Group reported the following	
			notes regarding aerosols, clouds, complex surfaces and	
			radiative transfer modeling in general.	
			Aerosols	

1. The working group discusses the existence of a new UV	
optical database: the Super-spheroid model (Lei Bi, oral	
presentation 11.05 ITSC-2024).	
Kong, S., Sato, K. and Bi, L., 2022. Lidar Ratio-	
Depolarization Ratio Relations of Atmospheric Dust	
Aerosols: The Super-Spheroid Model and High Spectral	
Resolution Lidar Observations. Journal of Geophysical	
Research: Atmospheres, 127(4), p.e2021JD035629	
and the development of ML approaches to parameterize the	
database and its jacobians	
Yu, J., Bi, L., Han, W. and Zhang, X., 2022. Application of a	
neural network to store and compute the optical properties of	
non-spherical particles. Advances in Atmospheric Sciences,	
39(12), pp. 2024-2039.	
2. It was reported that the fast RT model RTTOV	
OPAC/CAMS database now includes new species (volcanic	
ash, Asian dust and the ICON-ARTS species). It was	
recommended that RTTOV developers reach out to the	
aerosol community and survey their aerosol (physical)	
needs.	
3. It was encouraged that the aerosol community publish a	
literature review that includes new aerosol studies and	
challenges regarding VIS/near-IR aerosol sensitivities and	
spectral dependencies.	

4. Continuous support for field campaigns and the	
community to use field campaign data for validation studies.	
5. Recommendation to connect aerosol Fcs to RT evaluation	
studies.	
Clouds	
1. Continue support for refractive index dependence studies	
on temperature in the far-IR.	
2. Continue support to exploit synergy (i.e., FORUM+IASI-	
NG) in studies of cloud properties and retrievals.	
3. The development/evaluation of fast scattering solvers such	
as the Chou/Tang phase function scaling methods (i.e.,	
poster 1p.12 ITSC-24 presented by Vidot et al.)	
4. The continuous support for the development of cloudy RT	
model validation datasets.	
5. Continuous support to address the discussion as to	
11	
whether physical consistency is important: "true"	
hydrometeor size/shape or spectral "significant" parameters	
are enough. In this regard it is important to mention the	
recent work presented at ITSC-24 (Ether Villeneuve's work,	
presentation 1.05) that indicated that perturbations of NWP	
model parameterizations have a larger impact than	
hydrometeor habit assumptions. In radar sensitivity (Ku):	
convective parameterization / cloud fraction has a larger	
impact than changing shape / PSD parameters. In radiance	

 space: representation of the cloud overlap scheme also has a large impact. 6. Continuous support of sub-grid variability studies (NUBF effects / cloud fraction impact) studies. 7. Support studies that can assess the impact/importance of habit/PSD parameter on radiance space. 8. Continuous the ongoing recommendation of model intercomparison.
Surface properties 1. The working group discusses that microwave observations over land are a problem for data assimilation (DA), and recognizes the importance of improved land surface emissivity models with the explicit intent of improving data assimilation over land (possibly to research into AI approaches).
IESWG: The IESWG continues to support these efforts, and radiative transfer particularly in snow, soil and vegetation and at lower microwave frequencies would help in the uptake and use of this data in land data assimilation. The ability to work with mixed surface types is also of high importance to our group.

4.7	Stimulate trade-off		
	analyses for the		
	development of		
	future passive		
	sounding		
	instruments		

	Sandrat studios to	Ear EDC CC ELIMETCAT has an alread of the transferre	
	Conduct studies to	For EPS-SG, EUMETSAT has concluded that no major	
in	nvestigate the	improvements for MWS can be anticipated (over current	
te	echnical feasibility	microwave state-of-the-art sounders) within known technical	
to	o reduce the field of	limitations. For the foreseeable future, no significant	
V	view sizes for future	improvements are expected for the CGMS baseline."	
m	nicrowave sounders		
to	o keep in line with	However, it should also be noted, that for ongoing	
	he spatial resolution	considerations of microwave constellations and	
	expected for future	miniaturisation of microwave instruments, the continued	
	global NWP models.	trade-off studies are essential.	
g g		trade-off studies are essential.	
		FUN to shark with Christophe Accedie on studies for EDS	
		EUM to check with Christophe Accadia on studies for EPS-	
		Sterna	
		Discussions foreseen at WG-II on Hyperspectral µwave	
		WG-II to comment	

4.7.2	Conduct trade-off	NOAA to check whether GEO-XO trade-off studies can be	
	studies regarding the benefits of spectral,	shared	
	radiometric, and	WG-II to comment	
	spatial resolution of	W G-II to comment	
	infrared sounders,		
	taking into account		
	aspects such as		
	scene		
	inhomogeneity and		
	uncertainties in		
	spectroscopy;		
4.8	Support to		
	emerging		
	application areas		

4.8.1	Foster the coordinated development of novel products and applications of the new generation of imagers, initially for the areas of fire, aerosols, flood- mapping and river ice break-up.		Collaboration on flood mapping is progressing well between NOAA and CMA. In addition the flood mapping was discussed at CGMS-48 WG-II meeting establishing links with CEOS and the WMO Flood Forecasting Initiative. Roshydromet also presented promising high resolution flood mapping results that could be used as independent validation. Hence, in summary flood mapping is progressing well. Limited progress and collaboration was presented in other areas. Fires covered by GOFC-GOLD WG-II to comments	
-------	---	--	---	--

4.8.2	Provide support to	WG-II	WG-II to comment	
	users in the WMO			
	application areas,			
	including for			
	agricultural,			
	hydrology,			
	cryosphere,			
	marine/ocean and			
	other applications,			
	with a focus on the			
	WMO co-led UN			
	Early Warnings for			
	All (EW4ALL)			
	identified priority			
	hazards (heat,			
	drought, flood, and			
	tropical cyclones);			
	and, where			
	appropriate, identify			
	and follow-up on			
	opportunities by			
	other entities (e.g.			
	CEOS led			
	activities).			

4.8.3 R	eview capabilities WG-II, II	ESWG	IESWG: IESWG has identified Snow Water Equivalent	
	f and identify		(SWE) measurements as a gap in space-borne products.	
cr	ritical gaps in the		There is an additional need for a continuous purpose-	
C	GMS constellation	C	designed record of soil moisture relevant observations.	
fo	or the provision of			
pł	hysical snow and	V	We note HLPP item 4.2.4 as a similar gap item, and wonder	
ic	e products in	i	if a similar statement could be made regarding SWE? (4.2.4	
su	upport of		Establish a coherent development of volcanic ash products	
op	perational	8	and applications with close user community coordination.).	
cr	ryosphere, polar	S	Such a product would be based on a number of operational	
ar	nd high-mountain		μwave sensors, in particular AMSR and CIMR, as well as	
m	nonitoring, and	C	contributions from R&D sensors.	
	eflecting WMO			
	riorities to address		Proposed new target for HLPP: Establish a coherent	
	lobal and regional		development of a Snow Water Equivalent (SWE) product	
1 1	npacts of changes		and applications with close user community	
	n the cryosphere		coordination.	
(2	2024-2027).			

4.8.4	Establish product	WG-II	WG-II to comment	
	development			
	priorities including			
	synergistic products			
	for operational			
	monitoring of			
	cryosphere, polar			
	and high-mountain			
	regions;			

4.9	IdentifyAI/MLtechnologiesforapplyingtoproductprocessinganddata	WG-II, supported by all ISWGs, WG-I and	Comments from International Science Working Groups: IPWG has created a Machine Learning WG with the explicit purpose of setting up a common evaluation tool for individual investigators. The tool will provide the same	
	management infrastructure and		training data to each participant and then assess the quality of the ML learning algorithm by testing against and	
	develop best practices		independent but similar dataset and a dataset from a different region that the algorithm has never encountered	
			 ITWG: Following ITSC-24, the ITWG Radiative Transfer and Surface Modeling Working Group identifies areas where AI is being used effectively. For example: Neural network-based methods for simulating cloudand aerosol-affected solar satellite channels (Leonhard Scheck, presentation 11.06 on ITSC-2024): MFASIS in vis/near-IR/IR 0.4 – 2.2 micron Hatfield, Sam, et al. "Building tangent-linear and adjoint models for data assimilation with neural networks." Journal of advances in Modeling Earth Systems 13.9 (2021). The working group further identified areas that could benefit from AI approaches. For example: Cloud and precipitation. parameter tuning to decide the best configuration based on a large training dataset for DA. i.e., Geer, A.J.: Physical characteristics of frozen 	

	 hydrometeors inferred with parameter estimation, Atmos. Meas. Tech., 14, 5369-5395, https://doi.org/10.5194/amt-14-5369-2021, 2021 Land surface emissivity methods The EUMETSAT "AI roadmap" was mentioned as being the only "coordinated" effort at operator level that was known in the working group. The general consensus was 	
	recommending funding agencies to fund 3+ years for AI research into replacing or developing components that get	
	used in operational context (e.g., fast models).	
	IWWG: Jascon Apke (CIRA) presented the Optical flow Code for Tracking, AMV, and Nowcasting Experiments	
	(OCTANE), an open-source toolkit that could be used for AMVs derivation for NWP DA and early signals of deep convection development. ICWG:	
	While no formal ICWG activity to date has focused on AI/ML approaches,	
	ICWG recognizes the potential impact of such approaches on cloud property retrievals.	

Many ICWG-3 presentations featured AI/ML algorithm approaches for cloud property retrievals, including for scene classification and retrievals of multilayer clouds	
Moreover, AI/ML was proffered as a potential new Topical Group for ICWG-4, and many contributions to the ISCCP- NG cloud product assessment are expected to leverage AI/ML techniques, thus enabling their evaluation against heritage approaches and common benchmark datasets.	
ICWG therefore will continue efforts to coordinate and evaluate AI/ML technologies.	

5	ADVANCING THE ARCHITECTURE FOR CLIMATE MONITORING FROM SPACE (THROUGH THE JOINT CEOS-CGMS WORKING GROUP ON CLIMATE)	Joint CEOS- CGMS Working Group Climate (WG Climate)		
5.1	Update ECV Inventory of Climate Data Records, Gap Analysis and Coordinated Action Plan (CAP) of CEOS and CGMS and report on status of the implementation of the CAP (This target is cyclic and all three parts are covered every		The ECV Inventory v4.1 will be updated to v5.0 by incorporating the ~45 CDRs previously submitted to the activity (just after the window closed in the last update). We expect to release v5.0 by 30 December 2024. The Gap Analysis Report and updated CAP have not been released (and hence no update on implementation),	
	year including endorsement by CEOS and CGMS);		however we expect release by Autumn 2024. All three of these activities were impacted by the pandemic backlog, and additionally be a contract lapse for the Inventory work. 2021,	

5.2	Report to and interact with the UNFCCC Subsidiary Body for Scientific and Technological Advice – Research and Systematic Observation (SBSTA-RSO) to foster the usage of satellite data in the context of the Paris Agreement, in particular results from the operational GHG monitoring system. (This target is also part of the cyclic regular annual reporting);	 Despite the lack of an operational GHG monitoring system as referenced in this Action, WGClimate coordinated a set of research-grade GHG fluxes and related data sets through a tailored GST data portal to support GST1. We have no indications these data were reviewed or leveraged in the GST Reports. Interactions with UNFCCC SBSTA have been very limited and less-than-productive following Joanna Post's departure and the absence of a permanent backfill for her position. The interactions primarily only concerned COP Earth Information Day activities, in which case WGClimate (via Susanne Mechlenburg) provided a briefing to delegates and guests in attendance. WGClimate is actively working with CEOS partners to identify opportunities first finding points-of-contact to improve the communication with SBSTA, UNFCCC and other bodies (e.g., GEO) to foster greater use of satellite data. 	
-----	--	--	--

5.3	Respond to the GCOS IP after new versions of it issued by GCOS (every 5 years). Provide support to GCOS for the GCOS status report (one year prior to the new GCOS IP);	 Per last year's report, WGClimate in working progressively through development of the Space Agency Response via a planned 2-year stratified and prioritized approach. This activity includes regular meetings with GCOS Secretariat, and is currently tracking well. We expect completion in time for endorsement at the CGMS Plenary in 2025. 	
5.4	JWGClimate Task Team on GHG monitoring to coordinate the specific CGMS contributions to the operational GHG constellation, covering activities on mission coordination, inter-calibration, product prototyping, data distribution, exchange, formatting, and on training and outreach;	This activity formally commenced on 3 June 2024 in a first- ever meeting of leadership from the CGMS Standing WGs, WGClimate and its GHG TT. The meeting resulted in alignment on shared purpose and a high level path forward, including stratification and assignment of issues to address, and will use the imminent GHG Roadmap activity in part as a vehicle to begin addressing issues. Meeting participants plan to meet periodically (e.g., semi-annually) going forward. CGMS identified an inter-WG liaison (Simon Elliott) to WGClimate to facilitate coordination and co- author the Roadmap.	

5.5	Foster the implementation of the architecture for climate monitoring from space by strengthening the analysis of use cases for climate data records to increase usage in climate services and science.	The primary work on this Use Case activity is complete, and results have been posted online. WGClimate is no longer soliciting new use cases, however it will consider additional cases if and when offered.	
5.6	JWGClimate to publish updated definitions for the Fundamental, Thematic, and Interim Climate Data Record.	WGClimate has developed a mature set of definitions, solicited some community feedback, and plans to submit a peer-reviewed journal article on this by 31 December 2024.	

5.7	Engage in the development of requirements for an integrated global greenhouse gas observing system (i.e. both space-based and surface-based assets).	This work partially began via WGClimate participation in the G3W Study Group, which ultimately led to the G3W Implementation Plan. As part of the GHG Roadmap update and initial work with CGMS WGs in 2024, WGClimate will engage further with G3W and other user programs (e.g., UNEP IMEO, Methane Pledge) as possible to ascertain further requirements on the system.	
5.8	Support the WMO joint study group on greenhouse gas (GHG) monitoring for the development of requirements for data latency of GHG observations;	WGClimate participated in the Study Group, including via the Study Group Co-Chair Vincent-Henri Peuch from WGClimate. Initial G3W requirements were defined.	

6	ADVANCE OPERATIONAL	SWCG	
	SPACE WEATHER		
	MONITORING FROM		
	SPACE		

6.1	Coordinate CGMS activities and align priorities with the space weather user community, in particular the ICAO Space Weather Centres, ISES, WMO ET-SWx and the UNCOPUOS STSC	 Several ICAO SWC members are participating in SWCG and are also members of ISES. ISES is invited to give presentation at SWCG. The SWCG Task Group on Improving Data Access objective is directly related to this coordination activity and includes ISES representation. 5 teleconferences have been held. A dedicated CGMS-ISES meeting took place as part of the ISES annual meeting on 21 April 2023 with future feedback process defined. The UNCOPUOS STSC ET on SWx recommendation for WMO, ISES and COSPAR to initiate an activity to improve coordination has been followed up with the creation of the WMO Expert Team which includes CGMS representation from SWCG, together with ISES and COSPAR members.
		The published UNCOPOUS STSC Long Term Sustainability Guidelines covering space weather and reporting of spacecraft anomalies are being considered within CGMS and WMO-ET-SWx.

6.2	Establish a consistent inter- calibration framework in GSICS for energetic particle measurements using instruments with adequate in- orbit calibration and vicarious methods;	The task group on inter-calibration of high energy particle sensor has successfully transitioned to a GSICS space weather subgroup which reports progress to the CGMS SWCG.	
6.3	Advance the integration of Space Weather coordination activities into the relevant CGMS working groups;	The integration of Space Weather activities in relevant CGMS WGs is continuing. SWCG Chairs and rapporteur participate in relevant Intersessional activities to ensure coordination: Joint session with WG-I and -IV, GSICS discussions, participation in annual CGMS Risk Assessment workshop.	

6.4	In coordination with IROWG	Progress is being made in the development of advanced	
	establish requirements for and	methods to reduce residual effects of the ionosphere on	
	recommend an implementation	atmospheric retrievals and an increasing number of receivers	
	of an optimised system for radio	are able to collect ionospheric data, for example, the	
	occultation observations for	extension of GRAS RO profiles into the ionosphere under	
	ionosphere monitoring.	testhas been implemented for on Metop first generation	
		satellites, soon later to be complemented by Metop second	
		generation ionospheric RO data. End-user utilization of	
		ionospheric RO is increasing, with COSMIC-2 ionospheric	
		data starting to be integrated into SWPC models.	
		The SWCG Task Group on Radio Occultation system	
		optimisation has been established, including IROWG	
		leadership to reduce end-to-end data and product median latencies to at or below 30 minutes and perform Observation	
		System Simulation Experiments to determine the optimal	
		orbital configurations and necessary measurement counts.	
		oronal configurations and necessary measurement counts.	

6.5	Ensure the timely access to and global exchange of space weather data of CGMS Members, including instruments hosted on third-party satellites	 WMO is in the process of establishing the definition of weather data types as "core" or "recommended", with data enjoying free and open distribution. EUMETSAT is enhancing existing partner cooperation agreements to encompass space weather exchange. N and EUMETSAT are discussing the expansion of cur exchanged data sets, as are CMA and EUMETSAT. 	n core on IOAA

6.6	Document current data formats for space weather observations	The SWCG surveys of data providers and data users include information on formats used for operational space weather purposes.
		The SWCG Task Group on improving data access is working towards standardised data formats and meta data using CF conventions, with prototype NetCDF formats under development. Coordination with WMO-ET-SWx is also on-going in this respect.

6.7	Investigate impact on future SW observations due to increased demand on SW services by Space Situational Awareness and Space Traffic Coordination	SSA Champion	Discussions are on-going between CGMS members and their regional SSA / space traffic coordination responsible entities regarding the prediction of the thermospheric drag environment. An ESA presentation on the status of their activities was made at CGMS-51 SWCG.	

7	OUTREACH AND TRAINING	Vlab proposes to add priority:
		"Ensure availability and training in usage of satellite data and products in monitoring regional priority hazards in addressing the UN Early Warnings for All initiative."

7.1	Engage in communication and outreach activities to promote EO and Space Weather observations benefits.	Plenary	VLab participates in the CEOS Earth Observation Training, Education, and Capacity Development Network (EOTEC DevNet) activities. Many VLab members join the quarterly Regional Flood Working Groups Meetings. EOTEC DevNet is initiating a Drought Working Group that will be of interest for collaboration.	
			During this past year, the Kenya CoE organized an Aviation Space Weather Course and the CoE Costa Rica published a GOES-R Satellite Space Weather Receiver Tutorial. VLab supports promising and early career personnel to attend training events, conferences, or conduct scientific activities that contribute towards satellite product development, evaluation, and implementation.	
			Maybe 7.1 need to be clarified or expanded? EO is often interpreted as activity under CEOS and GEO. In reality, we use the best available data/information to assess the situation. Vegetation health, precipitation, temperature and extremes are used to assess agriculture production and are also used to assess forest health in relation to wildfire hazard. The products for each share similar goals although are often produced by different organizations and groups. How do we better leverage information and efforts across disciplines and sub-disciplines?	

7.2	Training	Plenary /VLab	

7.2.1	Continue to foster optimum use of satellite data for weather forecasting, climate applications, and environmental assessments including hazardous events such as volcanic ash and flooding;	 VLab members conducted monthly Regional Focus Group/Monthly Weather and Climate Meetings (Americas and the Caribbean, Australian and Indonesia CoEs, EUMETSAT, and Oman CoE) which highlight recent significant events. Many VLab members reported delivering training on multihazard events and particularly training for the Early Warning for All (EW4ALL) initiative. To be noted is that priorities change in importance depending on exposure to events. For example, there is higher interest in the Earth Observation (here related to vegetation health and wildfire risk, drought, flooding, direct impacts on communities and agriculture production) component to address EW4ALL and Climate initiatives in general. The recent Geomagnetic Storms also pushed interest up. 	
-------	---	--	--

	TT 1 . 1 1 1		
7.2.2	Update and develop new	Significant progress in the training material provided by the	
	training material where	VLab. View the VLab working paper for a summary of	
	necessary, and in collaboration	events.	
	with other training and	In developing satellite skills for climatologists, Vlab worked	
	education programmes in the	closely with experts. Since climate is a rapidly changing	
	subject of meteorology,	area, CGMS members are invited to improve	
	including the WMO-CGMS	communications with the CEOS-CGMS Joint Working	
	Virtual Laboratory for	Group on Climate and training priorities.	
	Education and Training in		
	Satellite Meteorology (VLab),		
	the Community for the		
	Advancement of Learning in		
	Meteorology and related		
	disciplines (CALMet), and the		
	WMO Training and Education		
	Programme. It will also include		
	partnerships with the		
	Committee on Space Research		
	(COSPAR), the CEOS Working		
	Group on Capacity Building		
	and Data Democracy		
	(WGCapD), CEOS-CGMS		
	Joint Working Group on		
	Climate, and with other		
	programmes in areas of		

	common or complementary interest.		
7.2.3	Provide shared, regular support to funding the VLab Technical Support Officer function through the WMO VLab Trust Fund, and to the VLab Centres of Excellence as per agreed expectations.	The Centres of Excellence appreciate the opportunities and collaborations provided by CGMS partners. Current WMO Trust funding supports the part-time TSO and travel for VLab personnel to attend meetings and conferences.	

7.3	User Co	onferences	Plenary	Series of Asia-Oceanic conferences and NOAA satellite	
				users' conferences are continuing.	
	Conduct	t regional satellite users			
	conferer	nces to		In spite of COVID-19, the 11 th Asia-Oceanic Conference	
	(i)	share experience and		was held in Beijing Oct 2021 as a hybrid event and	
		foster the exchange of		conducted a series of virtual Community Meetings in Oct	
		ideas;		2020.	
	(;;)				
	(ii)	promote better access,			
		and improve the			
		utilisation of, existing			
		satellite data and			
		products;			
	(iii)	prepare the user			
		community on new			
		satellite systems' data			
		products and			
		services;			
	(iv)	engage with the user			
		community on the			
		•			
		application of new			
		Climate Data Records,			
		supported by the			
		CEOS-CGMS Joint			
		Working Group on			
		Climate;			

(v)	gain user feedback on	
	data, product and	
	system real-world	
	application;	
(vi)	engage young people	
	entering the field;	
(vii)	other items as	
	appropriate.	