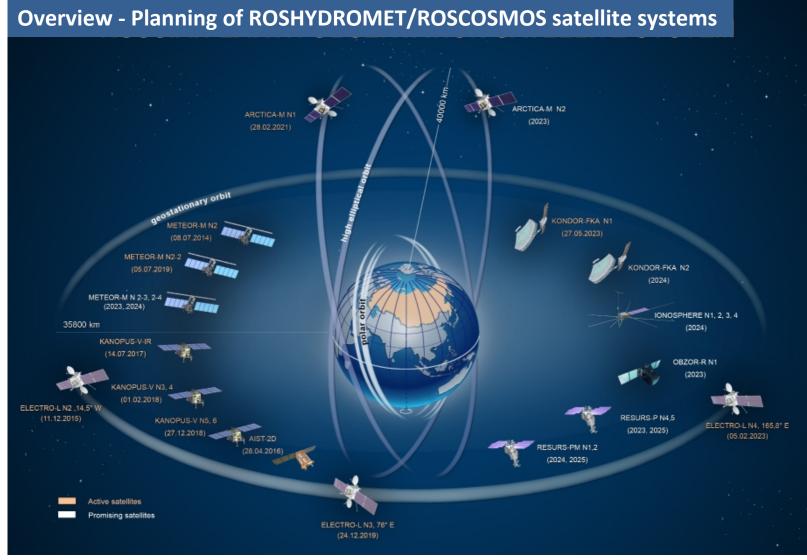


Status report on the current and future satellite systems by ROSHYDROMET/ROSCOSMOS

Presented to CGMS-51 plenary session, agenda item 2


Executive summary

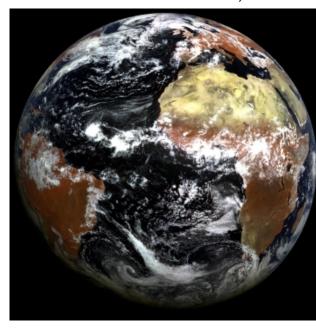
Since CGMS-50 the Russian hydrometeorological satellite constellation has been increased by geostationary meteorological satellite Electro-L N4 launched on 5 February 2023. Now the geostationary constellation of 3 satellites covering the Altantic, Indian and Pacific ocean areas is fully deployed. The launch of polar-orbiting meteorological satellite Meteor-M N2-3 and highly elliptical orbit meteorological satellite Arctica-M N2 are scheduled by the end of 2023.

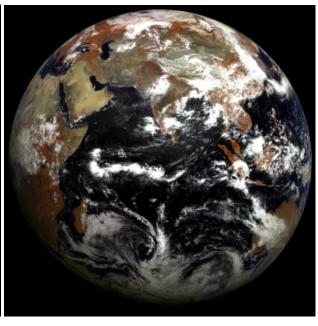
CURRENT GEO SATELLITES

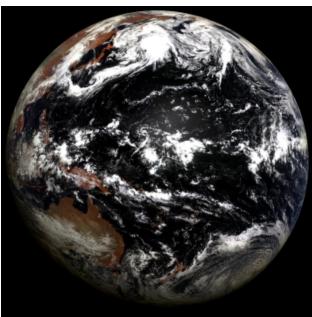
Electro-L constellation standing points:

14,5°W – Electro-L N2 76°E – Electro-L N3 165,8°E – Electro-L N4

- Instrument payload:
 - MSU-GS imager
 - Heliogeophysical complex GGAK-VE
 - Data collection system
 - COSPAS-SARSAT system
 - direct broadcast HRIT/I RIT
- Objectives of Electro-L mission:
 - Continuous observation of the Earth disc within a radius of 55-60 degrees centered at the subsatellite point;
 - Simultaneous images of cloud cover and the Earth's surface in 3 visible and 7 infrared channels;
 - Heliogeophysical measurements at geostationary orbit altitudes;
 - Collection and retransmission of the hydrometeorlogical data from national international platforms (DCPs);
 - Retransmission of the data from Roshydromet regional centers;
 - Data dissemination in HRIT/LRIT formats to national and foreign users


CURRENT GEO SATELLITES


Daytime visible images


Electro-L N2 - 14,5°W

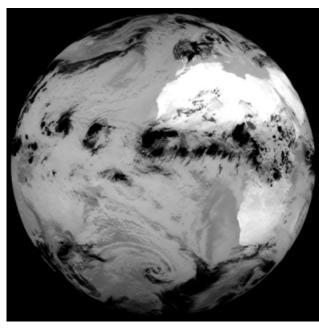
Electro-L N3 - 76°E

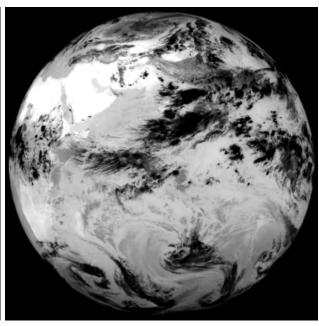
Electro-L N4 - 165,8°E

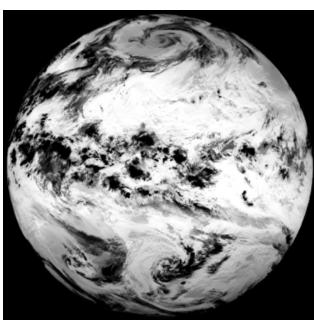
19/06/2003 12:00 UTC

19/06/2003 06:00 UTC

20/06/2003 00:00 UTC


CURRENT GEO SATELLITES

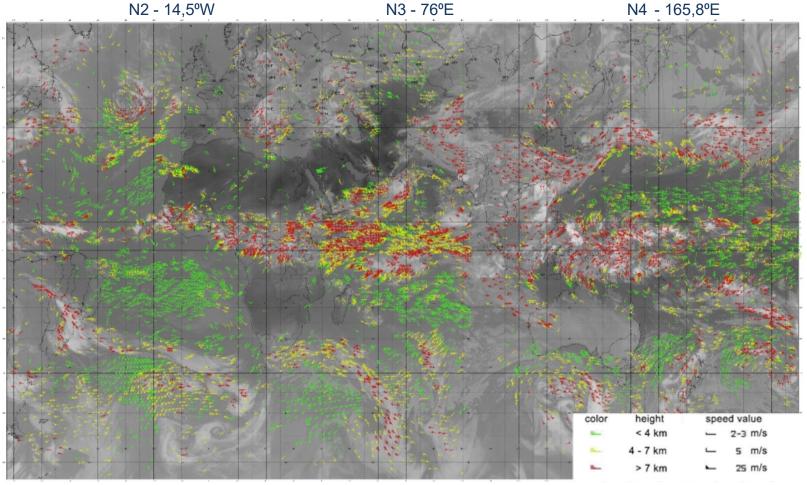

Simultaneous IR 10,8 mkm images


Electro-L N2 - 14,5°W

Electro-L N3 - 76°E

Electro-L N4 - 165,8°E

21/06/2003 12:00 UTC

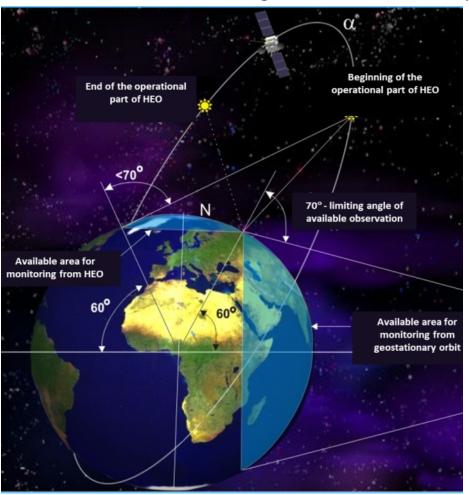


CURRENT GEO SATELLITES

Global Map of Atmospheric Motion Vectors based on Electro-L N2, N3 & N4

15/06/2003 12:00 UTC

CURRENT LEO SATELLITES


➤ Two Meteor-M series satellites are now operational on sun-synchronous orbit with ~820 km height, 98.8°inclination:

Meteor-M N2 - "morning" orbit, ascending equator crossing time ~ 9:30 Meteor-M N2-2 - "afternoon" orbit, ascending equator crossing time ~ 15:00

- ➤ Meteor-M N2 in now ~9 years old and off the planned life span
- Instrument payload operational for now: Meteor-M N2:
 - GGAK-M Heliogeophysical Measurements Suite Meteor-M N2-2:
 - MSU-MR Scanning Radiometer (1 km spatial resolution multichannel scanning unit, 6 channels, VIS/IR)
 - KMSS VIS Scanning Imager (6 channels implemented by 3 cameras, 50 m and 100 m spatial resolution)
 - GGAK-M Heliogeophysical Measurements Suite
- The main objective of Meteor-M mission is to provide global observations of the Earth's surface and the atmosphere for the following purposes:
 - Weather analysis and forecasting on global and regional scales;
 - Global climate change monitoring;
 - Sea surface observations;
 - Space weather analysis and prediction (solar wind, ionosphere research, Earth's magnetic field, etc.)
- Meteor-M LEO constellation is planned to consist of 4 spacecrafts to provide meteorological data over Russian Federation at least 8 times per day at synoptic time

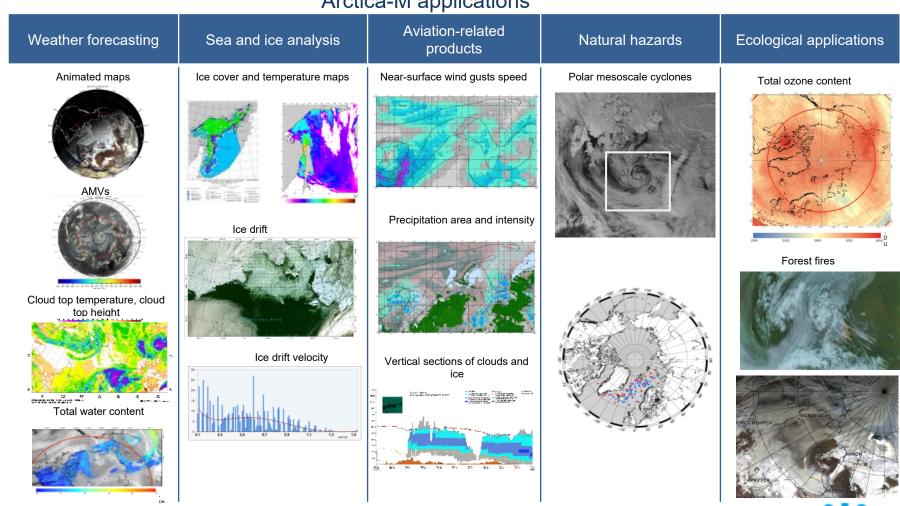
CURRENT HEO SATELLITES

Arctica-M N1: First meteorological satellite in HEO ("Molniya" orbit) continuing successful operation

Parameter	Value
Orbit: Apogee, km Perigee, km Inclination, deg Period, h 1st apogee longitude, deg 2nd apogee longitude, deg	40 000 1 000 63,4 12 25 W 155 E
Full number of MSU-GS/A spectral channel	10
Spectral range, μm	from 0,5 to 12,5
Resolution (at nadir): - VIS-channel, km - IR-channel, km	1 4
Frequency of Arctic region' observation, min: - regular mode - frequent mode	30 15

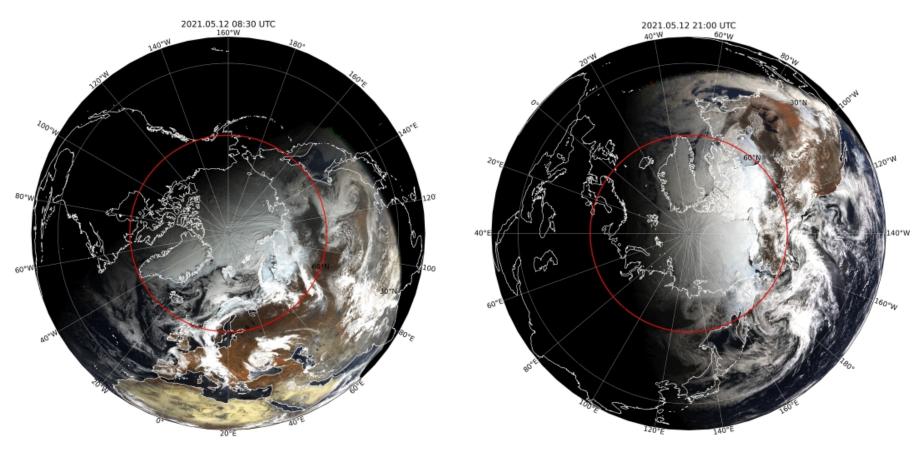
CURRENT HEO SATELLITES

- Primary objectives of Arctica-M mission:
 - Continuous observation of Arctic and contiguous region
 - Simultaneous images of cloud cover and the Earth's surface in 10 visible and infrared channels
 - Heliogeophysical measurements at orbit altitudes (electromagnetic solar radiation, corpuscular radiation and terrestrial magnetic fields)
 - The development and maintaining the national data collection system, collection of the hydrometeorlogical data from national and international platforms
 - Two-way radio communication with stations of Roshydromet hydrometeorlogical network
- Arctica-M N1 payload includes:
 - MSU-GS/VE imager in 3 visible channels (1 km spatial resolution) and 7 IR channels (4 km spatial resolution)
 - GGAK-VE Heliogeophysical Measurements Suite
 - Data collection system (DCS)
- Arctica-M N1 satellite is functional without limitations



CURRENT HEO SATELLITES

Arctica-M applications

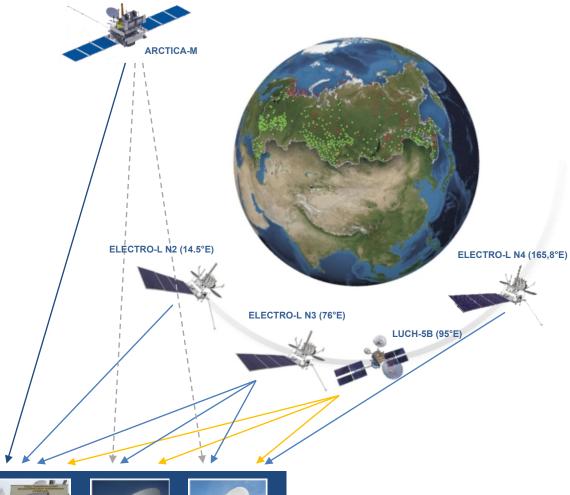


CURRENT HEO SATELLITES

Cloud animation in VIS based on Arctica-M N1 data

"Eastern" pass

"Western" pass


Animated maps from 15/30 min scans allows to track the evolution of clouds in the daytim

CURRENT GEO/HEO SATELLITES

DCS comprises of the network of DCPs at Roshydromet' observational sites, relay transponders at Russian satellites of Electro-L, Luch and Arctica-M series, and ground receiving stations at SRC Planeta satellite centers.

Data is currently being collected from 696 Roshydromet's observation network (• • •), including 141 difficult to access stations (•).

FUTURE GEO SATELLITES

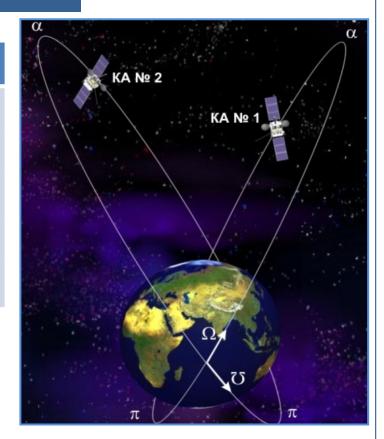
Mission	Operator(s)	Orbit	Launch planned	Instruments
Electro-L N5	ROSHYDROMET /ROSCOSMOS	GEO, standing point TBD	2025	MSU-GS, GGAK-VE, DSC, COSPAS- SARSAT, direct broadcast HRIT/LRIT
Electro-M N1	ROSHYDROMET /ROSCOSMOS	GEO, standing point TBD	>2025	 MSU-GSM imager with ~20 channels, hyperspectral sounder IKFS-GS,
Electro-M N2	ROSHYDROMET /ROSCOSMOS	GEO, standing point TBD	>2026	lightning detector,radiation balance radiometer,heliogeophysical complex KGI,
Electro-M N3	ROSHYDROMET /ROSCOSMOS	GEO, standing point TBD	>2029	DSC,COSPAS-SARSAT,direct broadcast HRIT/LRIT

- ➤ Electro-L N5 is the serial satellite planed for maintain the current constellation
- New generation GEO satellite series Electro-M with extended useful payload is planned to start after 2025

FUTURE LEO SATELLITES

Mission	Operator(s)	Orbit	Launch planned	Instruments	
Meteor-M N2-3	ROSHYDROMET /ROSCOSMOS	LEO, ECT 9:00 desc	27/06/2023	 MSU-MR MTVZA-GY IKFS-2 KMSS DCS MeteoSAR GGAK-M2 dissemination HRIT/LRIT 	
Meteor-M N2-4	ROSHYDROMET /ROSCOSMOS	LEO, ECT TBD	2024		
Meteor-M N2-5	ROSHYDROMET /ROSCOSMOS	LEO, ECT TBD	2025		
Meteor-M N2-6	ROSHYDROMET /ROSCOSMOS	LEO, ECT TBD	>2025	COSPAS-SARSAT	
Meteor-MP N1	ROSHYDROMET /ROSCOSMOS	LEO, ECT TBD	>2026	 MSU-MR-MP (20 channels) MTVZA-MP IKFS-3 SA-MP SCAT-MP ARMA-MP KGI-MP DCS dissemination HRIT/LRIT COSPAS-SARSAT 	

- Meteor-M N2-3 to N2-6 will be serial identic satellites to form LEO constellation
- Meteor-MP will start next generation LEO constellation with improved characteristic and new payload incl. scatterometer, radio occultation sounding, greenhouse gas spectrometer



FUTURE HEO SATELLITES

Mission	Operator(s)	Orbit	Launch planned	Instruments
Arctica-M N2	ROSHYDROMET /ROSCOSMOS	HEO Molnya Orbit	2023	• MSU-GS/HE • GGAK-VE • DSC
Arctica-M N3	ROSHYDROMET /ROSCOSMOS	HEO Molnya Orbit	TBD	
Arctica-M N4	ROSHYDROMET /ROSCOSMOS	HEO Molnya Orbit	TBD	
Arctica-M N5	ROSHYDROMET /ROSCOSMOS	HEO Molnya Orbit	TBD	
Arctica-M N6	ROSHYDROMET /ROSCOSMOS	HEO Molnya Orbit	TBD	

- Arctica-M N2 will provide continuous quasi-stationary observation of arctic region
- The HEO constellation of 4 spacecraft will allow to double the periodicity of observation from two angles

Thanks for attention!

