Prepared by WMO Agenda Item: 3 Discussed in WG III

COORDINATION BETWEEN WMO OSCAR/SPACE AND CEOS MIM

In response to CGMS Action WGIII/A47.06b

Efforts to improve coordination between the WMO OSCAR/Space (see https://www.wmo-sat.info/oscar/spacecapabilities) and CEOS/MIM (see http://database.eohandbook.com) databases have been pursued for the past few years, and these attempts so far have been generally inconclusive.

In response to CGMS action WG III/A47.06b, a study has been performed recently to analyse various related aspects: covered areas, timeliness requirements, information sources, validation procedures, measurements and maintenance.

The study concludes that *convergence* of the two systems is impossible, and *coordination* remains difficult. *Cooperation* may be attempted, at least in the areas of updating the status of satellites and instruments and implementing convergence of the names of observed variables.

The study results contained in this working paper have already been delivered to CEOS, and as a result, further efforts to improve coordination are being made.

Action proposed: CGMS to take note of the efforts to improve coordination between WMO OSCAR/Space and CEOS MIM and to close Action WG III/A47.06b.

COORDINATION BETWEEN WMO OSCAR/SPACE AND CEOS MIM

20 November 2019

1. Preamble

Both OSCAR (Observing Systems Capability Analysis and Review Tool) and MIM (Missions, Instruments, Measurements and Datasets) draw origin from a CEOS initiative carried out in 1996-1997 for a "*Database on User requirements and Space capabilities*". The implementation was taken over by the WMO Space Programme Office. The collected information started to be issued in electronic form as a *Dossier on the Space-based Global Observing System*, published from 2004 to 2012, updated initially yearly, thereafter quarterly. Since Autumn 2012 the Dossier was replaced by the online OSCAR database. The MIM initiative took form in CEOS in 2009-2010 and gave rise to an online database around 2012. The idea of pursuing some convergence between OSCAR and MIM was naturally proposed at instances, and several times analysed.

This note collects background elements to take into account for searching possible convergences. Consideration is given to:

- the covered areas
- the timeliness requirements
- the information sources
- the validation procedures
- the measurements
- the maintenance aspects.

It is acknowledged that this note, produced in WMO, is biased by the full knowledge of the OSCAR features v/s the limited visibility of MIM details.

2. Covered areas

Probably all EO satellites since the first one (TIROS-1, 1_{st} April 1960) and their instruments are recorded in both OSCAR and MIM. Planned satellites are slightly more numerous in MIM because of more stringent criteria for being accepted for entrance in OSCAR.

In addition to EO satellites, OSCAR describes satellites for Space weather launched in the past 30 years, and a selection of most important launched before; as well as earlier instruments when hosted on operational meteorological satellites.

OSCAR includes information on the architecture of data circulation, ground segment, and access to raw and processed data. MIM provides references to existing datasets.

OSCAR is used as repository of the frequency plans of operational meteorological satellites and some R&D satellites used in operations, and the frequencies of MW active or passive sensors, for the purpose of frequency protection.

3. Timeliness

Being OSCAR designed to meet requirements of operational meteorology, updating of the information is performed on a nearly continuous basis. This is a big difference from MIM, that uses to be updated on an yearly basis.

The announcement of a new launch is recorded as soon as the success of the launch is official. The description of the satellite and its instruments, in general, is already in place in OSCAR, following the information on future plans; otherwise it is searched around as quickly as possible.

4. Information sources

The main information source for space programmes, satellites and instruments in OSCAR is the yearly plenary meeting of CGMS. The members and observers in CGMS are:

	O	Observers				
CMA	China	JAXA	Japan	CSA	Canada	
CNES	France	JMA	Japan	ENV CAN	Canada	
CNSA	China	KMA	Korea	GCOS	International	
ESA	International	NASA (also reporting for USGS)	USA	KARI	Korea	
EUMETSAT	International	NOAA (also reporting for DoD)	USA	KIOST	Korea	
IMD	India	ROSCOSMOS	Russia	SOA	China	
IOC-UNESCO	International	ROSHYDROMET	Russia			
ISRO	India	WMO	International			

In addition, in the course of the year there are several committees and expert groups that meet in WMO or elsewhere (more often: EUMETSAT and NOAA) and provide fresh information on programmes, satellites and instruments.

The occurrence of new launches is announced within a few hours after the event by the *Gunter's Space Page* at https://space.skyrocket.de/index.html. This site also provides some summary description of the satellite and its instruments, as well as an approximate calendar of scheduled launches. A more accurate calendar is provided by *Spaceflight Now* at the site https://spaceflightnow.com. Here also, after the event, there is some information on satellite and its instrument. The instrument descriptions at *Gunter's Space Page* and *Spaceflight Now* are not enough detailed for the purpose of OSCAR, but they are useful to check that the instruments effectively launched correspond to what was planned.

For MIM, the nominal information source is an yearly inquiry to the CGOS members and associates:

Members									
ASI	Italy		KARI	Korea					
CAST	China		KMA	Korea					
CDTI	Spain		NASA	USA					
CMA	China		NASRDA	Nigeria					
CNES	France		NIER	Korea					
CONAE	Argentina		NOAA	USA					
CRESDA	China		NRSCC	China					
CSA	Canada		NSAU	Ukraine					
CSIRO	Australia		NSO	Netherlands					
DLR	Germany		Roscosmos	Russia					
EC	International		RosHydroMet	Russia					
ESA	International		SANSA	South Africa					
EUMETSAT	International		TÜBITAK	Turkey					
GISTDA	Thailand		UAE SA	United Arabe Emirates					
INPE	Brazil		UKSA	United Kingdom					
ISRO	India		USGS	USA					
JAXA	Japan		VAST	Viet Nam					

Associates						
AEM	Mexico					
AGEOS	GABON					
ANGKASA	Malaysia					
BELSPO	Belgium					
BOM	Australia					
CCMEO	Canada					
CRI	New Zealand					
CSIR	South Africa					
ESCAP	International					
ESSO	India					
FAO	International					
GA	Australia					
GCOS	International					
GGOS	International					
GOOS	International					
ICSU	International					
IOC	International					
IOCCG	International					
ISPRS	International					
NSC	Norway					
SNSA	Sweden					
UNEP	International					
UNESCO	International					
UNOOSA	International					
WCRP	International					
WMO	International					

It is noted that members or observers of both CEOS and CGMS (yellow-highlighted) support the large majority of satellite programmes for meteorology, oceanography and climate, whereas the non-CGMS institutes are mostly oriented to national programmes for land observation and disaster monitoring.

In OSCAR, satellites from non-CGMS-nor-CEOS countries also are recorded; as well as commercial satellites sustained by the following companies:

Commercial Companies sustaining high-resolution land observation satellites

CGMS-48-WMO-WP-10c V1, 15-05-2020

21AT	China	DigitalGlobe	USA	GeoEye	USA	SpacEyes	China	SSTL	UK
BSG	USA	Elecnor-Deimos	Spain	RapidEye	Germany	Spot Image	France	Terra Bella	USA

5. Validation

The MIM approach for information entering is to rely on the material provided by the space agencies in response to the yearly inquiry. This has the advantage of leaving the responsibility to authoritative sources, but the disadvantage of dependence from the amount of care placed by the responder.

In OSCAR, every input information is scrutinised before entering, because of the envisaged followon process (see next section). Each data is cross-checked with any other available information, to identify and correct possible mistakes and ensure completeness as needed. Templates have been developed, initially as guidance to information providers (failed plan, because of excess of complexity or lack of careful responses), thereafter for internal use as a check list.

The most difficult task is to validate the information on the status of satellites and instruments. Whilst is it relatively easy to collect the announcements of successful launches, the notification of satellite decommissioning and instrument degradation or failure is rarely reported. Consequently, the information on time availability for gap and risk analysis tends to be unreliable. In OSCAR the case is handled by recording the status of these satellites as "Unclear" and flagging the instruments as "presumably active"; but they continue to appear in the timeline of the gap analysis, undermining its credibility. Expected launch or EOL dates are recorded as ≥yyyy. In MIM, simply the nominal launch or EOL dates are recorded, that sometimes may be misunderstood as really occurred.

6. Measurements

The instrument descriptions in OSCAR are much more detailed than in MIM, because the evaluation of the retrievable measurements is performed by an *expert system* that moves from the instrument *properties* and simulates the retrieval process by a number of *rules*. Here is an example of results:

Tentative Evaluation of Measurements from TMI on TRMM										
Variable	Rating	Operational limitations	Explanation							
Accumulated precipitation (over 24 h)	2 - very high	Poor time sampling. Time	MW channels around 10, 19, 23, 37 and 90 GHz, with							
		sampling to be interpolated by GEO.	high spatial resolution							
Cloud liquid water (CLW)	3 - high	No specific limitation.	MW channels around 37 and 90 GHz							
Cloud liquid water (CLW) total column	3 - high	No specific limitation.	MW channels around 37 and 90 GHz							
Integrated Water Vapour(IWV)	<mark>3 - high</mark>	Over sea only.	MW channel(s) in the water vapour band around 23 GHz							
Land surface temperature	5 - marginal	Coarse spatial resolution.	MW channels around 10 GHz							
Long-wave Earth	4 - fair	Long time series needed.	MW channels around 10, 19, 37 and 90 GHz. Emissivity							
surface emissivity			across this MW range inferred by statistical analysis							
Precipitation intensity at	2 - very high	No specific limitation.	MW channels around 10, 19, 23, 37 and 90 GHz, to cover							
surface (liquid or solid)			sea and land, heavy and light precipitation. High spatial							
		resolution consistent with the scale of precipitation								
Sea surface temperature	5 - marginal	Warm temperature only.	MW channels around 10 GHz							
Snow cover	2 - very high	Coarse spatial resolution.	MW channels around 19, 37 and 90 GHz. Higher frequencies							
			less sensitive to emissivity from ground under snow . High							
			resolution closer to the scale of snow fields							
Snow status (wet/dry)	1 - primary	Coarse spatial resolution.	MW channels around 19, 37 and 90 GHz. Higher frequencies							
			less sensitive to emissivity from ground under snow. High							
		0	resolution closer to the scale of snow fields							
Snow water equivalent	1 - primary	Coarse spatial resolution.	MW channels around 19, 37 and 90 GHz. Higher frequencies							
		Ground stations network needed.	less sensitive to emissivity from ground under snow. High							
			resolution closer to the scale of snow fields							
Soil moisture at surface	3 - high	Coarse spatial resolution.	MW channels around 10 GHz							
		Strongly affected by vegetation.								
Wind speed (near surface)	3 - high	Over sea only.	MW channels around 10, 19 and 37 GHz							

This process is performed automatically by the *expert system* as soon as an instrument is entered in OSCAR with described properties (hence the need for careful validation of the input data). Currently, about 900 instruments are described in OSCAR, ~600 for EO, ~300 for Space weather.

It is noted that the *expert system*, in addition to identifying the geophysical variables potentially retrievable, also assigns a rating of the quality of the retrieval (in 5 steps). The table of potential

measurements also indicates possible operational limitations and provides explanation of the main factors that drive the retrieval process.

The evaluation is performed addressing geophysical variables that have been requested and described by a large number of expert groups coordinated by the WMO Inter-Programme Expert Team on Observing System Design and Evolution (IPET-OSDE) of the Commission for Basic Systems (CBS). Currently, the list includes 317 variables described in the OSCAR section for Observation Requirements (OSCAR/Requirements). Those considered in the OSCAR section for Space-based Capabilities (OSCAR/Space) are 188 (124 for EO, 64 for Space weather) split in 11 themes, as follows:

Geophysical variables considered in OSCAR/Space as of 18 November 2019										
Basic atmospheric	Ocean	Atmospheric chemistry	Heavy ion flux energy and mass spectrum							
Atmospheric temperature	Ocean chlorophyll concentration	03	Heavy ion angular flux energy and mass spectrum							
Specific humidity	Colour Dissolved Organic Matter (CDOM)	O3 (Total column)	Cosmic ray neutron flux spectrum							
Integrated Water Vapour (IWV)	Ocean suspended sediments concentration	BrO	Energetic Neutral Atom (ENA)							
Wind (horizontal)	Ocean Diffuse Attenuation Coefficient (DAC)	C2H2	Solar wind density							
Height of the top of the PBL	Oil spill cover	C2H6	Solar wind temperature							
Height of the tropopause	Sea surface temperature	CFC-11	Solar wind velocity							
Temperature of the tropopause	Sea surface salinity	CFC-12	Interplanetary magnetic field							
Wind speed over the surface (horizontal)	Ocean dynamic topography	CH4	Electrostatic charge							
Wind vector over the surface (horizontal)	Coastal sea level (tide)	CIO	Radiation Dose Rate							
Atmospheric density	Significant wave height	CIONO2	Solar monitoring							
Clouds and precipitations	Dominant wave direction	CO	Solar gamma-ray flux spectrum							
Cloud cover	Dominant wave period	CO2	Solar X-ray flux							
Cloud top temperature	Wave directional energy frequency spectrum	COS	Solar X-ray flux spectrum							
Cloud top height	Sea ice	H2O	Solar X-ray image							
Cloud type	Sea-ice cover	HC3Br	Solar EUV flux							
Cloud base height	Sea-ice elevation	HCFC-22	Solar EUV flux spectrum							
Cloud optical depth	Sea-ice thickness	НСНО	Solar EUV image							
Cloud liquid water (CLW)	Sea-ice type	HCHO (Total column)	Solar Lyman-alpha flux							
Cloud liquid water (CLW) total column	Land surface	HCI	Solar Lyman-alpha image							
Cloud drop effective radius	Land surface temperature	HDO	Solar UV flux							
Cloud ice	Soil moisture at surface	HNO3	Solar UV flux spectrum							
Cloud ice (total column)	Soil moisture (in the roots region)	N2O	Solar UV image							
Cloud ice effective radius	Biomass	N2O5	Solar Ca II-K image							
Freezing level height in clouds	Fraction of vegetated land	NO	Solar VIS flux							
Intering layer depth in clouds	Vegetation type	NO2 (Total column)	Solar VIS flux spectrum							
Precipitation (ilquid or solid) Precipitation intensity at surface (liquid or solid)	Leal Area Index (LAI)		Solar white light image							
Accumulated procipitation (over 24 h)	Fire fractional cover		Solar H alpha image							
Lightning detection	Fire temperature		Solar radio flux sportrum							
Approache and radiation	Fire radiative newer	SER	Solar coronagraphic imago							
Acrosol Ontical Donth	Show status (wot/dru)	SI 0	Solar coronagraphic image							
Acrosol mass mixing ratio	Show status (webury)	SO2 (Total column)	Solar magnetic field							
Acrosol column burdon	Show water equivalent		Solar volocity fields							
Acrosol offective radius	Silow water equivalent		Camma ray flux							
Aerosol type	Land cover	Flectric field	Gamma-ray flux spectrum							
Aerosol volcanic ash	Land surface topography	Electron density	X-ray flux							
Aerosol volcanic ash (Total column)	Glacier cover	Ionospheric plasma density	X-ray flux spectrum							
Downward short-wave irradiance at TOA	Glacier motion	Ionospheric plasma velocity	X-ray sky image							
Upward spectral radiance at TOA	Glacier topography	Ionospheric radio absorption	EUV flux							
Upward long-wave irradiance at TOA	Ice sheet topography	Ionospheric scintillation	EUV flux spectrum							
Upward short-wave irradiance at TOA	Solid Earth and magnetic field	Ionospheric Vertical Total Electron Content (VTEC)	EUV sky image							
Short-wave cloud reflectance	Geoid	Energetic particles and solar wind	UV flux							
Downward long-wave irradiance at Earth surface	Crustal plates positioning	Electron integral directional flux	UV flux spectrum							
Downward short-wave irradiance at Earth surface	Crustal motion (horizontal and vertical)	Electron differential directional flux	UV sky image							
Earth surface albedo	Gravity field	Proton integral directional flux	VIS flux							
Earth surface short-wave bidirectional reflectance	Gravity gradients	Proton differential directional flux	VIS sky image							
Upward long-wave irradiance at Earth surface	Geomagnetic field	Alpha particles integral directional flux	Radio-waves							
Long-wave Earth surface emissivity		Alpha particles differential directional flux	Heliospheric image							
Photosynthetically Active Radiation (PAR)	1									
	1									

Measurements that can be provided from space also are considered in MIM. In the MIM edition for 2020 the following areas (5) and measurements (28) are listed:

Measurements considered in MIM in the edition for 2020									
Atmosphere	Liquid water and precipitation rate	Soil moisture	Ocean topography/currents						
Aerosols	Ozone	Surface temperature (land)	Ocean wave height and spectrum						
Atmospheric Humidity Fields	Radiation budget	Vegetation	Surface temperature (ocean)						
Atmospheric Temperature Fields	Trace gases (excluding ozone)	Ocean	Snow and ice						
Atmospheric Winds	Land	Multi-purpose imagery (ocean)	Ice sheet topography						
Cloud particle properties and profile	Albedo and reflectance	Ocean colour/biology	Sea ice cover, edge and thickness						
Cloud type, amount and cloud top temperature	Landscape topography	Ocean Salinity	Snow cover, edge and depth						
Lightning Detection	Multi-purpose imagery (land)	Ocean surface winds	Gravity and Magnetic field						
			Gravity, Magnetic and Geodynamic measurements						

However, the "measurements" addressed by MIM often imply a number of "variables". This section of MIM is still under development, and currently only analyses a limited number of variables, whose

definition is often imported from OSCAR. It may be inferred that, finally, the variables handled in MIM will roughly correspond to those handled in OSCAR, except for Space weather variables. To be noted that the names of a few variables do not match each other.

It has been mentioned that the variables handled in OSCAR/Space are identified by an *expert system* automatically deriving the variable from the instrument properties. In MIM, the retrievable variables are declared by the agency responsible of the satellite and instrument.

Both OSCAR and MIM provide timelines of availability of measurements/variables. MIM is so far limited to current or planned missions, in practice since 1999. OSCAR includes past missions, since their start date (for some, since 1960). However, the main difference is the degree of detail, that for OSCAR is at instrument level whereas for MIM is at satellite level, with some indication of the instrument. One comparative example, BrO, is shown below.

It may be noted that the OSCAR plot records each instrument potentially capable of measuring BrO, with indication of the satellite and its geostationary position or Equatorial Crossing Time. Also, there is a rating indicating the relative relevance of the various instruments, that may exploit different technologies, to meet user requirements [for example, in this particular case the rating is: 1 High-resolution UV spectrometer, 2 Mm-submm spectrometer, 3 UV spectrometer scanning the limb mechanically or electronically, 4 UV spectrometer scanning the limb by star occultation, and 5 UV spectrometer scanning the limb by solar occultation.

In addition to providing *gap analysis by variable*, OSCAR also generates a *gap analysis by mission*. Currently, the following 41 missions are defined:

Missions addressed in the Gap analysis of OSCAR/Space										
Multi-purpose VIS/IR imagery from LEO	Imagery with special viewing geometry	Space Weather: Field and wave monitoring								
Multi-purpose VIS/IR imagery from GEO	Lightning imagery from GEO or LEO	Gravity field measuring systems								
IR temperature/humidity sounding from LEO	Cloud and precipitation profiling by radar	Precise positioning								
IR temperature/humidity sounding from GEO	Lidar observation (for wind, for cloud/aerosol, for trace gases, for altimetry)	Data Collection Systems and Search-and-Rescue								
MW temperature/humidity sounding from LEO	Cross-nadir SW spectrometry (for chemistry) from LEO	Instruments covering 200-400 nm								
MW temperature/humidity sounding from GEO	Cross-nadir SW spectrometry (for chemistry) from GEO	Instruments covering 400-700 nm								
MW imagery	Cross-nadir IR spectrometry (for chemistry) from LEO	Instruments covering 700-1300 nm								
Radio occultation sounding	Cross-nadir IR spectrometry (for chemistry) from GEO	Instruments covering 1300-3000 nm								
Earth radiation budget from LEO	Limb-sounding spectrometry	Instruments covering 3.0-5.0 micrometers								
Earth radiation budget from GEO	High-resolution imagery for land observation	Instruments covering 5.0-8.5 micrometers								
Sea-surface wind by active and passive MW	Synthetic Aperture Radar	Instruments covering 8.5-15 micrometers								
Radar altimetry	Space Weather: Solar activity monitoring	Instrument covering 15 micrometers - 1 mm (300-20,000 GHz)								
Ocean colour imagery from LEO	Space weather: Heliospheric radiation monitoring	Instruments covering 1-300 GHz								
Ocean colour imagery from GEO	Space weather: Energetic particles monitoring									

The gap analysis by mission identifies all the instruments that measure variables relevant to implement a mission, independently from their type (that, however, impact on the effectiveness of the instrument impact. The following example refers to the mission *Limb-sounding spectrometry*:

Timeline of the mission "Limb sounding spectrometry" in the Gap analysis of OSCAR/Space (limited to period 2005-2031)

Instrument	NRT?	Sorting	Satellite	Orbit	2005	2006	2007	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031
MIGHTI		4	ICON	27 °															Þ	X	X	X	X	X							
SHIMMER		4	STPSat-1	37.4 °			X	X	X														-								
SAGE-III		2	ISS SAGE-III	51.6 °			1		_								X	X	Х	X	X	X									
SAGE-II		2	ERBS	57 °	X																										
MLS		3	UARS	57 °	х																										
HRDI		4	UARS	57 °	X																										
WINDI			UARS	57 °	x																										
MAESTRO ()		2	SCISAT-1	73.9 °	х	Х	Х	X	х	X	X	X	Х	X	х	X	Х	X	Х	х											
ACE-FTS		3	SCISAT-1	73.9 °	х	х	х	х	х	х	X	х	х	х	х	х	х	х	х	х											
TIDI			TIMED 0	74 °	X														x												
SAGE-III		2	Meteor-3M	09:15 asc	Х	x																									
OMPS-limb	Yes	2	<u>SNPP</u>	13:25 asc							>	X	Х	х	х	X	Х	X	х												
OMPS-limb		2	JPSS-2	13:30 asc																		Х	х	х	х	X	X	x	x		
OMPS-limb		2	JPSS-3	13:30 asc																						х	х	х	X	x	х
OMPS-limb		2	JPSS-4	13:30 asc																											х
AIUS		3	<u>GF-5</u>	13:30 asc														X	х	х	х	х	Х	Х	Х	х					
TES-limb 0		3	Aura	13:45 asc	х	X	х	Х	х	х	Х	Х	х	х	х	х	х	X													
MLS (EOS-Aura)		3	Aura	13:45 asc	х	х	х	х	х	х	Х	Х	х	х	х	х	х	х	х												
ACS-limb		1	Meteor-MP N1	15:30 asc																					X	X	X	X	X	X	х
OSIRIS	No	2	Odin	06:00 desc	X	X	X	X	x	X	X	Х	х	X	х	X	х	x	х												
SMR	No	3	Odin	06:00 desc	х	X	х	х	х	х	х	х	х	х	х	х	х	х	х												
ACS-limb		1	Meteor-MP N2	09:30 desc																						X	X	X	X	X	x
SCIAMACHY-limb		1	Envisat	10:00 desc	X	X	X	X	X	X	X	x																			
GOMOS 0		2	Envisat	10:00 desc	X	X	х	х	х	х	x																				
OMS-limb		2	FY-3F	10:00 desc																	Х	Х	Х	Х	Х	Х					
MIPAS		3	Envisat	10:00 desc	X	х	Х	Х	X	X	X	X																			
ILAS-I		5	ADEOS	10:30 desc																											

The impact is rated as follows: 1 UV/VIS/NIR/SWIR spectrometer, 2 UV/VIS and possibly NIR spectrometer, 3 IR spectrometer in MWIR and TIR OR Mm-submm spectrometer in the range 60-250 GHz or possibly 60-650 or possibly 60-3000 GHz, 4 Very-high resolution spectrometer operating on lines in VIS and NIR, and 5 Occultation spectrometers.

7. Maintenance aspects

The maintenance of OSCAR is heavier that of MIM because of:

- higher complexity of the system, in spite of the automatism granted by the developed *expert system* for identification and handling of the retrievable geophysical variables;
- need for wide-range scientific support for validation and, at instances, development.

Uploading the information on current and planned satellites and instruments implies a massive analysis of documents made available at CGMS plenary sessions and, to a minor extent, expert groups reporting to WMO and cooperating agencies. In addition, there is the continuous monitoring of launch events. A major problem is the need for careful checking of all the incoming information in order to ensure the quality and completeness necessary to enter the *expert system*.

Since, in general, the information is anticipated by the planning, therefore may need actualisation, it is necessary to control at instances whether something (especially in the instrument characteristics) needs updating after consolidation. An OSCAR/Space Support Team (O/SST) representing all CGMS operators ensures correctness and completeness of the factual content of OSCAR/Space.

A major problem is to find information on the status of satellites and instruments, never enough emphasised by the responsible agencies. Periodic requests are addressed to designated or otherwise identified contact points, but the response rate is generally poor. Of course, this problem strongly affects the realism of the gap analyses.

The scientific contents of OSCAR/Space also need to be monitored and, at instances, updated. A critical point, fortunately infrequent, arises when the *expert system* needs additions to deal with an instrument of new conception. To deal with updating the OSCAR/Space functionalities, e.g. for mapping mission capabilities to WMO observational requirements, there is an OSCAR/Space Science and Technical Advisory Team (O/SSAT), made of representatives of international science working groups such as ITWG (sounding), IWWG (winds), IPWG (precipitation), IROWG (radio occultation), ICWG (clouds), and from the Global Space-based Inter-Calibration System (GSICS).

For detailed characteristics and information on the status of satellites and instruments managed by CGMS, OSCAR/Space, in cooperation with GSICS, records the links to *Landing pages* that, in principle, the space agencies should maintain updated.

One important maintenance task regards the User requirements. Side-to-side with OSCAR/Space, OSCAR/Requirements define the needed geophysical variables and quotes their uncertainty as:

- "goal": an ideal performance above which further improvements are not necessary
- "breakthrough": a performance that, if achieved, would result in a significant improvement
- "threshold": minimum requirement to be met to ensure that data are useful.

The requirements are subject to a *Rolling Requirements Review* process (RRR) overviewed by the previously mentioned IPET-OSDE. They cover the following application areas:

Applications areas currently considered in the Rolling Requirements Review								
Global Numerical Weather Prediction	Aeronautical Meteorology	Ocean Applications						
High-Resolution Numerical Weather Prediction	Agricultural Meteorology	Monitoring Atmospheric Composition						
Nowcasting / Very Short Range Forecasting	Climate Monitoring (GCOS)	Forecasting Atmospheric Composition						
Sub-Seasonal to Longer Predictions (SSLP)	Climate Science	Atmospheric Composition for urban and populated areas						
Hydrology	Climate applications	Space Weather						

The geophysical variables were defined by several User groups, representing a number of international programmes. They formulated the quantitative requirements, and continue to update them periodically, issuing *Statements of Guidance*. The current list of User groups is as follows:

User groups involved in development and updating of the Rolling Requirements Review								
Expert Team on Observational Data Requirements and Redesign of the Global Observing System (ET ODRRGOS)	Global Climate Observing System (GCOS)							
Atmospheric Observation Panel for Climate (AOPC)	World Climate Research Programme (WCRP)							
Joint Technical Commission for Oceanography and Marine Meteorology (JCOMM)	Oceans Observation Panel for Climate (OOPC)							
Terrestrial Observation Panel for Climate (TOPC)	Global Atmosphere Watch (GAW)							
Interprogramme Coordination Team on Space Weather (ICTSW)	World Meteorological Organization (WMO)							

There is strong interaction between OSCAR/Space and OSCAR/Requirements. Currently, out of the 317 variables listed in OSCAR/Requirements, only 188 are processed in OSCAR/Space. Most of the missing ones are not processed because currently impossible to be observed from space, or impossible to be retrieved with acceptable accuracy and/or reliability [it is noted that the RRR is technology-free in respect of measuring either from space or on/from the ground]. Other variables are not processed because trivial derivative of a processed one. Another reason for not processing is when the retrieval algorithm is too much dependent from external information, or requires a combination of more instruments [ideally, OSCAR/Space tends to be limited to consider "Level 2" products, i.e. those where it is possible to recognise the originating instrument].

Adding further variables to be processed is part of the OSCAR/Space maintenance task. It may turn to be a difficult task because it implies additions to the *expert system*, that is something that requires substantial scientific capability.

A main problem with OSCAR/Space maintenance is the level of resources in WMO. The in-house scientific resources do not allow to face significant developments, and the technical assistance is so scarce that even developments already prepared cannot be put in operation. This backlog of prepared developments mostly focusses on improved User interfaces, especially for better exploitation of the Gap analyses. Other maintenance issues currently on stand regard the realignment of the *Gap analysis by mission* to the latest WIGOS deliberations.

As for MIM, maintenance is, in principle, simpler because of the limited timeless requirements and the lower degree of needed scientific validation, due to the trust given to the space agency statements and to the CEOS study groups assessments. Handling technical activities is facilitated by the support of an efficient company specialised in database development and maintenance (*Symbios*), that also is tasked of producing the CEOS EO Handbook, published at circumstances on variable thematic issues.

8. Opportunities for OSCAR-MIM cooperation

The idea of cooperation between the OSCAR and MIM databases is rather obvious, and was suggested in several occasions, sometimes tasking the responsible persons to study the matter.

CGMS-48-WMO-WP-10c V1, 15-05-2020

Correspondence on the subject was exchanged is a few occasions. The results have always been inconclusive, because of reasons not obvious if one does not enter the details of the two databases.

The background difficulty is that, although both OSCAR and MIM address most of the areas of interest (except for Space weather for MIM), OSCAR has to pay particular care to applications requiring demanding timeliness (e.g., operational meteorology). The updating rate of MIM (yearly) does not fit this requirement.

The next problem is that OSCAR is user-oriented and pays regard to the *Rolling Requirements Review* (RRR), where requirements are formulated in a technology-free fashion. This implies that the instrument capability to measure a geophysical variable, and the quality of the retrieval, are assessed by the users, not simply declared by the instrument provider. Because of this, the instrument description in OSCAR must be sufficiently detailed, and the declared characteristics carefully validated before entering the evaluation process.

The evaluation process applied in OSCAR (the *expert system*) would be difficult to run on MIM, not only because of lack of validation of the input data, but also because any correction or adaptation or addition require <u>scientific knowledge</u> that might not be available. Actually, it is not sure that the result from the *expert system* is more accurate, but at least all instruments are compared on a fair basis, and the statements of the results are traceable to the instrument characteristics.

The <u>gap analysis</u> in OSCAR is performed at instrument level, covering the past by about 50 years; in MIM at satellite level (with some indication of the concerned instrument), over about 20 past years. As for the future, MIM includes more planned satellites than OSCAR, since OSCAR does not include yet satellites and instruments not described with sufficient detail.

In OSCAR, the <u>geophysical variables</u> are defined and quantitatively specified by the RRR. In MIM, most geophysical variables are imported from OSCAR (thus from the RRR), but several others do not match. Anyway, several quoted measurement capabilities do not match. The quality of the retrieved measurement is evaluated in OSCAR, not mentioned in MIM.

In conclusion, *convergence* of the two systems is impossible, and *coordination* is difficult. *Cooperation* may be attempted, at least in the following two areas:

- since CEOS/MIM interacts with more agencies than WMO/OSCAR, it could help for updating the status of satellites and instruments in order that the gap analyses stop carrying forward systems that perhaps are inactive since long;
- WMO/OSCAR could help CEOS/MIM for implementing convergence of the names of observed variables towards those established in the framework of the RRR. Perhaps MIM could adopt the quality rating of the retrieved measurements as computed by the OSCAR *expert system*.