

STATUS OF HIMAWARI-8/9 AND THEIR FOLLOW-ON SATELLITE HIMAWARI-10

Presented to CGMS-51 WG III, agenda item 4.1 (JMA-WP-06)

Japan Meteorological Agency

Himawari-8/9

Himawari-8 began operation on 7 July 2015, switching over to Himawari-9 on 13 December 2022

Geostationary position	Around 140.7°E				
Attitude control	3-axis attitude-controlled geostationary satellite				
	1) Raw observation data transmission Ka-band, 18.1 - 18.4 GHz (downlink)				
Communication	2) DCS (Data collection System) International channel 402.0 - 402.1 MHz (uplink) Domestic channel 402.1 - 402.4 MHz (uplink) Transmission to ground segments Ka-band, 18.1 - 18.4 GHz (downlink)				
	3) Telemetry and command Ku-band, 12.2 - 12.75 GHz (downlink) 13.75 - 14.5 GHz (uplink)				

Switch over from Himawari-8 to Himawari-9

- JMA conducted the operational satellite switchover from Himawari-8 to -9 on 13 December 2022.
- The switch was almost seamless with no data discontinuity.
 There were no changes to data format or data dissemination system between Himawari-8 and Himawari-9.
- Filename for Himawari Standard Data (HSD) and NetCDF via HimawariCloud changed as :

```
HS_H08_yyyymmdd_hhnn_Bbb_cccc_Rjj_Skkll.DAT.bz2 for H-08 HSD HS_H09_yyyymmdd_hhnn_Bbb_cccc_Rjj_Skkll.DAT.bz2 for H-09 HSD The same applies to NetCDF files
```

• JMA provided parallel distribution of Himawari-9 observation data and products for several months by an additional method before the switchover (27 Sep. – 13 Dec. 2022).

HimawariRequest

 HimawariRequest was started from January 2018 in cooperation with Bureau of Meteorology (BoM), Australia.

International service for NMHSs in Himawari-8/9 coverage area to request Target

Area observation(1,000 x 1,000 km area every 2.5 minutes).

- JMA expects this service to support disaster risk reduction activities in the Asia Oceania region.
- Status as of 5 April 2023
 - ➤ Registration: 22 NMHSs
 - 176 requests for TC, volcanic eruption, wildfires, etc.

HimawariRequest from BoM on 13-19 Mar. 2019

Himawari Follow-on Program

- JFY2018: JMA has started to consider the next GEO satellite (Himawari-10) program.
 - "By JFY2023 Japan will start manufacturing the Geostationary Meteorological Satellite that will be the successor to Himawari-8/9, aiming to put it into operation in around JFY2029" Japan's "Basic Plan on Space Policy" (June 2020)
 - > JMA will pursue seamless GEO satellite system by considering CGMS baseline and WMO Vision for WIGOS in 2040 to contribute the establishment of Geo-Ring observation.
- JFY2019: Worldwide Technology Trends Survey on Future Satellites/Instruments
- JFY2020: OSSE of hyperspectral IR sounder on JMA NWP systems was implemented.
- JFY2021: Internal, domestic and international user requirements will be summarized.
- JFY2022: RFI, RFP and Start of manufacturing of H-10 using supplemental budget
- JFY2028: Launch of Himawari-10
- JFY2029: Start of operation of Himawari-10

JFY (Apr – Mar(Next))	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029
Himawari-8 Himawari-9	N	Manufacturing Launch Operational In-orbit standby							У	In-orbit standby Operational											
follow-on (under considering)													2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2		Ma	nufa	ıctuı	ring	Lo	aunc	h

WMO Vision for WIGOS in 2040 for GEO

	Application	Satellite/Instrument
VIS/IR Imager w/ rapid repeat cycles	Cloud amount/type/top height/temperature, wind, sea/land surface temperature, precipitation, aerosols, snow cover, vegetation cover, albedo, atmospheric stability, fires, volcanic ash, sand/dust storm, convective initiation	 NOAA: GOES-16,17/ABI JMA: Himawari-8,9/AHI KMA: GK-2A/AMI CMA: FY-4A,4B/AGRI EUMETSAT: MTG-I1/FCI (2022)
Hyperspectral IR Sounder	Atmospheric temperature/humidity, wind, rapidly evolving mesoscale features, sea/land surface temperature, cloud amount/top height/temperature, atmospheric composition	 NOAA: N/A JMA: N/A KMA: N/A CMA: FY-4A,4B/GIIRS EUMETSAT: MTG-S1/IRS (2024)
Lightning Mapper	Lightning, location of intense convection, life cycle of convective systems	 NOAA: GOES-16,17/GLM JMA: N/A KMA: N/A CMA: FY-4A/LMI EUMETSAT: MTG-I1/LI (2022)
UV/VNIR Sounder	Ozone, trace gases, aerosol, humidity, cloud top height	 NASA: TEMPO (2022) JMA: N/A KMA: GK-2B/GEMS CMA: N/A EUMETSAT: MTG-S1/UVN (2024)

JMA's 10-Year Strategy Toward

- 1. Technology Developments
- Application of latest sci & tech;
 - ✓ Advanced satellites, remote sensing, big data
 - ✓ NWP and other prediction tech.
 - ✓ Collaboration etc.
- Improvement of forecasts
 - ✓ Nowcast up to 1 hour
 - ✓ 12-hour forecast of localized heavy rain (stationary linear mesoscale convective systems)
 - 3-day typhoon forecast etc.

- 2. Promotion of Effective Utilization of Info./Data
- > Build environment for better usage
 - ✓ Larger data flow
 - ✓ Easier access
- Raise capacity for the utilization
 - ✓ Literacy about disaster, safety, etc.
 - ✓ Application technology/skill

Met.
Services
for Better
Society

Synergy

3. Contribution to Disaster Resiliency

- JMA to Contribute to "Disaster Awareness Society" and to play the leading role in met. services
 - ✓ Improved impact-based warnings on the basis of advanced sci & tech
 - ✓ Collaborate with stake-holders to build local decision making capacity
 - ✓ Raise individual disaster awareness and response capacity

We need to observe 3-D humidity information to improve these forecasts

Toward Better Prediction for Stationary Linear Mesoscale Convective Systems

- High-impact weather events in recent years have resulted in a demand for improving JMA's weather forecasts/warnings
- Torrential rain events during East Asian rainy season in 2020 and 2021 further enhanced this demand
 - ✓ Mainly caused by stationary linear mesoscale convective systems.
- JMA established WG with external experts and internal TF to improve the prediction system to issue warnings with extended lead time by
 - ✓ Introducing advanced observation technologies such as GNSS receivers on vessels (short-term subject) and geostationary IR sounders (long-term subject)
 - ✓ Improving NWP models
- Enhanced collaboration with academia.

Coordination Group for Meteorological Satellites Houses submerged by the Kuma River on 4 July 2020 (MLIT)

3-h accumulated radar/rain-gauge obs. (mm) at 0500 on 4th July 2020

Himawari-10 Overview

Missions

- Geostationary HiMawari Imager (GHMI)
 Measures visible & infrared radiance for weather
 monitoring/nowcasting & other applications.
- Geostationary HiMawari Sounder (GHMS)

 Measures high-spectral-resolution infrared radiance to collect vertical information of atmospheric temperature & water vapor, which improve weather forecasting by assimilating to numerical weather prediction models.
- Data Collection System
 Relays surface-based Data Collection Platforms (DCPs) data.
- Space Environment Suite
 Measures proton & electron flux in geostationary orbit, as a government furnished equipment by NICT.

Location

Geostationary orbit at around 140.7 deg. E

Satellite Outline

Satellite Design						
Spacecraft	MELCO standard DS2000 bus					
Mass (approx.)	2.4 t (dry), 6.1 t (with propellant)					
Size (approx.)	4 m x 3 m x 6 m (folded), 11 m (deployed)					
Design life	≥ 15 years (mission period ≥ 10 years)					
Communicatio ns	Ka-band: Mission data downlink Ku-band: TT/C uplink & downlink UHF-band: DCP uplink					

Geostationary HiMawari Imager (GHMI)

- L3Harris's new 18-band imager based on the same concept with its GeoXO Imager (GXI) selected by NASA
- Observing sequence & band configuration changed for Himawari-10 Improvement from Himawari-8/9
- Values in the tables show JMA requirements

GHMI Observing Area & Interval

Observing Area (minimum coverage)	Interval
Full Disk	10 min
Japan (EW 2500 km x NS 2000 km)	2.5 min
Target Area1 (EW 1000 km x NS 1000 km)	2.5 min
Target Area2 (EW 1000 km x NS 1000 km)	2.5 min
Target Area3 (EW 1000 km x NS 1000 km	2.5 min
Target Area4 (EW 1000 km x NS 1000 km)	2.5 min
Target Area5 (*) coordinat (EW 1000 km x NS 500 km) Meteorological Satenites *Mainly used for	30 sec

GHMI Spectral band characteristics Center Wavelength Band width Spatial resolution [µm] [µm] at nadir [km] 0.46 - 0.48≤ 0.07 ≤ 1 VIS 0.54 - 0.56≤ 0.05 ≤ 1 0.63 - 0.65 ≤ 0.12 ≤ 0.5 0.85 - 0.87≤ 0.06 ≤ 1 1.375 - 1.385 ≤ 0.04 ≤ 2 **NIR** 1.60 - 1.62 ≤ 0.08 ≤ 2 2.24 - 2.27 ≤ 0.06 ≤ 2 3.75 - 3.95≤ 0.50 ≤ 1 5.10 - 5.20 ≤ 0.20 ≤ 1 6.05 - 6.45 ≤ 1.20 ≤ 2 6.90 - 7.00≤ 0.50 ≤ 2 7.27 - 7.43≤ 0.60 < 2 **IR** 8.44 - 8.76 ≤ 0.50 ≤ 2 9.55 - 9.70 ≤ 0.50 ≤ 2 10.3 - 10.5 ≤ 0.90 ≤ 2 11.1 - 11.3 ≤ 1.00 ≤ 2 12.25 - 12.55 ≤ 1.20 ≤ 2 13.2 - 13.4 ≤ 0.70 ≤ 2

Geostationary HiMawari Sounder (GHMS)

- L3Harris's new infrared FTS sounder based on the same concept with its GeoXO Sounder (GXS) being proposed to NASA
- Observing sequence changed for Himawari-10
- Values in the tables show JMA requirements

GHMS Observing Area & Interval

Observing Area (minimum coverage)	Interval
Sounding Disk (LZA ≤ 60 deg)	60 min
Japan (EW 2500 km x NS 2000 km)	15 min [※]
Target Area (EW 1000 km x NS 1000 km)	15 min

Sounding Disk observation over Japan area is regarded as one of the "Japan" observations in the 60-min repeat cycle (i.e., three "Japan" observations to be conducted in 60 minutes).

GHMS Spatial & Spectral characteristics

Spatial (horizonta	≤ 4.2 km					
Spectral	LWIR	680 - 1095 cm ⁻¹ (14.7 - 9.13 μm)				
Coverage	MWIR	1689 - 2250 cm ⁻¹ (5.92 - 4.44 μm)				
Spectral Resolutio	≤ 0.754 cm ⁻¹					
Spectral Sampling	≤ 0.625 cm ⁻¹					

Thank you!!

Himawari-10 Perspective image

