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ABSTRACT 

 
Experiments have been performed to test the effect of superobbing atmospheric motion vectors within the 
Met Office’s global numerical weather prediction model. In superobbing, the difference between observations 
and co-located backgrounds within a given three dimensional box are averaged to create one 
superobservation. Like data thinning, superobbing lowers the effect of the correlated error by reducing the 
data density. Superobbing, however, has the added advantage over data thinning of reducing the 
uncorrelated error through averaging.  
 
The results of these experiments, as compared to a system similar to the Met Office’s operational system 
using data thinning, have been neutral. The forecast impacts are slightly positive in the northern hemisphere 
while slightly negative in the tropics and southern hemisphere reflecting the differing effects of alternative 
observations in the different hemispheres. This minor impact suggests that random error might not be the 
predominate error within atmospheric motion vectors. 
 
1.  INTRODUCTION 
 
In order to simplify the calculations and reduce the computing resources in most modern data assimilation 
systems, the observations and background fields used in these systems are assumed to have uncorrelated 
errors. This assumption leads to potential problems with data types such as satellite winds for which 
correlated errors, both with each other and with the background fields, are significant. It has been suspected 
for some time that a sizeable component of the errors in atmospheric motion vectors (AMV)s are correlated 
in space and time, but it is only recently that an attempt has been made to test and quantify this idea.  
Bormann et al. (2002) carried out a collocation study of satellite wind – rawinsonde pairs and showed that if 
the sonde errors are assumed to be spatially uncorrelated, then the errors in satellite winds are significantly 
correlated for distances of up to 800 km. It is believed that this correlated error has limited the impact of 
satellite winds within most NWP models, particularly with the increasingly high resolution of the wind data. 
 
Tests within the Met Office’s global NWP system using high-resolution satellite wind data sets at full 
resolution led to poorer analyses and forecasts than the lower resolution data sets that preceded them.  It 
was thought that the analysis was pulling too closely to the observations as their correlated errors would 
reinforce one another. These correlated errors are currently overcome within the Met Office observation 
processing system by data thinning. Thinning the data to 800 km, the resolution to which Bormann et al.'s 
work showed significant correlation, is an extreme measure and would lead to substantial loss of data and 
detail in the wind field.  Instead, the winds are thinned to a box size of 2 degrees (~200 km).  This resolution 
reduces the influence of correlated errors but does not solve the problem entirely.  To further compensate for 
the error correlations, the observation errors for satellite winds were doubled from what was believed to be 



close to the true error in the observations, additionally reducing the impact of satellite winds on the analysis. 
The modification was shown to improve the forecast skill (Butterworth et al., 2002).  
 
Although thinning and doubling the observation errors address the spatial correlation problem in a 
computationally inexpensive way, significant wind data are thrown away in the process.  A more promising 
idea is to average the observations; observations within a given box are averaged to create one observation 
that is positioned at the average location.  Like thinning, averaging will reduce the number and resolution of 
the data input into the data assimilation system and should therefore reduce the problems resulting from 
spatially correlated error.  A major concern of this method, however, is that it could lead to the loss of some 
meteorological features.  Consider a simple example in the region of a jet.  If winds above and below a jet 
core are averaged and the resulting wind placed at the average location, there is a danger that the slower 
wind will be positioned in the high speed region of the jet core, weakening the analyzed jet.  But can this 
problem be avoided?  We propose a superobbing scheme as a solution.  Instead of just averaging the 
observations, we will test a method to average the observation minus background difference, or innovation.  
This method should allow us to use more of the wind data, potentially reducing the observation error, while 
reducing the risks of smoothing atmospheric features.   
 
2.  SUPEROB OBSERVATION ERRORS 
 
Before the superobbing method can be implemented, the way in which superobbing would affect how errors 
are treated in the data assimilation system must be understood.  Most data assimilation systems produce 
their analyses through a complex weighted average between a model first guess, or background, and 
observations.  The extent to which the background and observations influence the analysis is determined by 
their respective error value.  Background errors are based on zonally and temporally averaged statistics from 
differences between 1- and 2-day forecasts valid at the same time for streamfunction, velocity potential, 
unbalanced pressure (ageostrophic pressure), and relative humidity.  These background errors also contain 
a mass and wind balance constraint (Ingleby, 2000).   
 
The errors in the observations and within the background make up the innovation: the difference between 
the observation and the background. The innovation statistics thus provide a measure of the upper limit of 
the observation errors. In calculating the operational observation error statistics, it is assumed that the 
background and observation errors are of similar magnitude. The observation errors can then be calculated 
using a year’s worth of innovation variances at different pressure levels. These observation errors will be 
changed by superobbing, which changes the innovations. In this section, we will derive an expression for the 
new superob observation error. 
 
Given a group of N observations (oi) and corresponding background values (bi) in a 3-dimensional box, a 
superob s can be formed as a weighted average of the observation minus the background. Namely: 
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where b0 is the background value at the superob location and wi is the weight for each o – b pair. 
 
By assuming that within a superob box: the observation and background errors are not correlated with each 
other, the background errors are fully correlated, the background errors have the same magnitude, all of the 
innovations are weighted equally (i.e. wi  is equal to the inverse of N), and the observation error correlations 
are constant, one can show that the Superob error se can be calculated by: 
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where C is a correlation matrix and W is a vector of weights. D  is a diagonal matrix of component 
observation errors within a box with the form: 
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where oiε represents the expected observation error of the ith component within the superob. The correlation 
matrix C   is a square matrix with 1’s along the diagonal and a constant correlation value on the off-diagonal. 
Based on values used in Bormann et al. (2002), a correlation value of 0.35 is used for the extra-tropics while 
0.26 is used for the tropics (assuming a 2-degree by 2-degree box). For comparison, a correlation value of 
1.0 would imply that the observation errors are fully correlated, while a value of 0.0 would imply fully 
uncorrelated error correlations. 
 
 
3.  EXPERIMENTAL DESIGN 
 
To test the effect of superobbing on the model analyses and forecasts, a set of data impact experiments was 
run comparing forecasts and analyses of a control run without superobbing and a run with superobbing. The 
control run for these experiments is a low resolution (100 km) version of the Met Office’s global NWP system 
with a forecast model described by Cullen (1997) and a 3-dimensional variational assimilation system 
described by Lorenc et al. (2000). 
 
The control run assimilates all of the operational Met Office satellite data with the addition of the Binary 
Universal Form for the Representation of meteorological data (BUFR) GOES infra-red, water vapor and 
visible AMVs. Currently, the Met Office operationally assimilates only the older SATOB format infra-red 
winds. The satellite winds in the control run are thinned to 2-degree 100 hPa boxes.  The observation errors 
and quality indicator thresholds are at their operational values. The experimental setup is identical to the 
control run, except that the winds are superobbed in 2-degree/100 hPa boxes rather than thinned. The data 
impact experiments are run from 12z 24 January 2004, through 12z 17 February 2004. Four analyses and 6-
hr forecasts are produced each day throughout the period along with one long term forecast out to 144-
hours. All of the forecasts are verified on this long range forecast initialized at 12z each day. 
 
To conceptualize how much data is used in the thinning experiment versus the superobbing experiment, 
examine Table 1. The second column shows the number of available satellite winds (without quality control) 
for each experiment. The third column shows the number of winds that are assimilated (for thinning), and the 
total number of winds used as components for superobbing. The percentage of total winds is in parentheses. 
As the table shows, superobbing uses significantly more data. Keep in mind, however, that because the 
superobbing resolution is identical to thinning, the actual number of winds assimilated in the superobbing 
experiment (as superobs) is almost identical to thinning. The additional used winds are primarily used as 
components of each superob. 
 

Experiment Available Winds Used winds (Percent total) 
Control-Thinning 200,000 8000 (4%) 

Superobbing 200,000 48,000 (24%) 
 

Table 1:   Typical number of winds available and assimilated for a single run of  the Control and 
Superob experiment. The majority of the increased number of winds for superobbing make up the 

components of the superob and are not assimilated directly. 
 
 
 
 
 
 
 
 



 
4.  RESULTS 
 
The impact of the superobbing experiments is small and mixed. Figure 1 shows the root mean square 
difference (RMS) between the superob experiment and the control expressed as a percentage as compared 
to observations and analysis.  In Figure 1, values that are below zero show fields that have improved the 
forecast. Percentages with absolute values higher than 2% are considered significant.  As can be seen from 
the plots the results are mixed and mostly neutral. We see negative results for the 500 hPa 72-hour forecast 
(500 hPa) in the southern hemisphere and for the 96-hour forecast for PMSL in the southern hemisphere 
when evaluated against observations. We also see fairly positive results of PMSL at T + 72 in the northern 
hemisphere against observations. Most of the fields, however, produce small impacts on either side of 
neutral.  The results are also neutral against the analysis with one notable exception: 250 hPa winds in the 
tropics. Otherwise some of the comparisons against analysis are better than those against observations and 
some are worse.  
 

 
 

Figure 1: Root Mean Squared differences between the experiment and the control for the northern 
hemisphere (NH), the tropics (TP) and the southern hemisphere (SH) for mean sea level pressure 

(PMSL), 500 hPa geopotential height (H500) and 250 and 850 hPa winds (W250 and W850 
respectively) with respect to analysis and observations. Negative numbers show improvement of the 

experiment over the control. 
 
It is also instructive to examine how the forecast skill changes with time. Figure 2 shows the anomaly 
correlation of the model forecast of 500 hPa height as compared to its own analysis. From the plots, one can 
see that superobbing shows some skill (although probably not significant skill) against the analysis in the 
long range for the northern hemisphere, but is generally negative for long ranges in the tropics and the 
southern hemisphere. This result is consistent with the RMS in Figure 1. 
 
 
 
 
 
 
 
 
 



 
 

 
 

Figure 2: Anomaly correlations for the northern hemisphere (NH), tropics (TP), and southern 
hemisphere (SH) versus analysis. The solid red line represents the control run, while the dashed blue 
line represents the superob experiment. Superobbing shows positive results for long forecast times 

in the northern hemisphere, but is neutral or negative against the analysis in the southern 
hemisphere and the tropics. 
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Figure 3: 24-hour Forecast – Sonde RMS 250 hPa wind vector error time series for the Control run 
(red solid line) and the superob experiment (blue dashed) line. The forecasts are evaluated at 12z 

from 25 January, 2004 through 12z 16 February. In all three regions superobbing both improves and 
degrades the control run, although the forecasts show the most improvement in the northern 

hemisphere. 
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It then becomes important to examine how the forecasts vary from day to day throughout the trial. Figure 3 is 
a time series of 24 hour forecast differences between radiosondes and the model 250 hPa wind. The RMS 
vector error is plotted as a function of day. The daily 12z forecast for superobbing (blue dashed line) and the 
control (red solid line) is plotted for the northern hemisphere, the tropics and the southern hemisphere. The 
missing values are due to missing radiosondes on the 10th. This problem does not affect the results shown. 
 
Although the three regions shown in Figure 3 differ, all of them show both improved and degraded forecasts. 
The majority of the superob forecasts in the northern hemisphere are neutral or slightly positive as compared 
to the control. The forecasts on the 2nd and 3rd are consistently poor in all three regions, while the 12z 
forecast on the 4th is generally improved through superobbing. In general though, superobbing’s effects are 
mixed and small at the 24 hour range. At longer ranges (not shown) the pattern continues with many mixed 
results, although they become slightly more extreme. The longer range is consistent with the 24 hour 
forecasts in that the northern hemisphere shows more forecast improvements than the southern hemisphere 
and the tropics. 
 
5.  CONCLUSIONS 
 
As a whole, superobbing produced neutral and small impact as compared to its control. The impact was 
more positive in the northern hemisphere than in both the southern hemisphere and the tropics as compared 
to both observations and the corresponding analysis.  A time series of individual forecasts also showed 
mixed results: some forecasts were positive, some negative, many were neutral. 
 
A more difficult question to answer is why the results were so mixed. Theoretically superobbing should 
remove some of the random error in the satellite wind data and should reduce the correlated error by the 
same amount as thinning. Many assumptions were made, however, to calculate the new superob 
observation errors. In particular, the correlation values used, although based on the values calculated by 
Bormann, are still assumed to be constant throughout a superob box. A deeper understanding of the 
correlated and random error of satellite winds is crucial to data assimilation and is an ongoing area of 
research. A more optimal error and superobbing method, like that suggested in Lorenc (1981), combined 
with increased understanding of the errors, might improve the results as well. 
 
It is also possible that we are not superobbing ideally. The choice of superobbing boxes is based on that of 
thinning: the same box size was chosen. Larger or smaller boxes might allow for more positive impact and is 
something that must be investigated. Vertical and temporal box sizes must also be considered and 
investigated more thoroughly.  
 
The component observation errors and quality indicator flags also impact the assimilation process. These 
experiments used the operational observation errors and operational quality control. It is possible that these 
can also be better tuned to optimize superobbing over thinning. 
 
Finally, these impacts were small enough to suggest that the random error reduced by superobbing is not a 
primary source of error for AMVs. The height assignment and areas where clouds are not moving with the 
average wind are both sources of error and are probably more significant than the random component of 
error. Understanding all of these sources of error will lead to more positive impacts from AMVs. 
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