
 
ERROR CHARACTERIZATION AND APPLICATION OF ATMOSPHERIC 

MOTION VECTORS OVER AUSTRALIA AND HIGH LATITUDES 
 

 
J. Le Marshall¹, ²  R. Seecamp² , A. Rea² , M. Dunn³ , J. Jung4, J. Daniels5 and  C. Velden4

 
¹ Joint Center for Satellite Data Assimilation, NOAA Science Center, MD, USA 

² Bureau of Meteorology, Melbourne, AUSTRALIA 
³ Physics Dept., Latrobe University, Melbourne, AUSTRALIA 

4Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin, USA 
5National Environmental Satellite Data Information Services, MD, USA 

 
 

ABSTRACT 
 

High density atmospheric motion vectors (AMVs) have been used operationally since the middle 1990s.  
Their benefit to NWP is dependent on quality control, error characterization and data selection.  Here, we 
show that quality control (q.c.) considerably reduces vector error.  In some cases, q.c. also reduces the 
correlated error and its associated length scale.  Modern operational data assimilation schemes require 
estimates of observation errors, and they assume that the errors are uncorrelated or require knowledge of 
their correlated error and length scale.  The expected error (EE) is now generated at the Australian Bureau 
of Meteorology (ABM), in addition to QI, RFF and other error indicators, to aid in quality control and error 
characterization of AMVs for numerical weather prediction (NWP).  Provision of the correlated error and 
length scale also provides a firm basis for data thinning. 
 
Error characterized and quality controlled AMVs have recently been used in a data assimilation experiment 
to gauge the impact of locally generated GOES-9 AMVs on operational NWP over the Australian Region.  
Their clear benefit is shown.  These vectors are now being used in NMOC for operational NWP.  In another 
recent experiment AMVs generated from sequential MODIS images at high latitudes have also been used in 
a data impact study to demonstrate their utility in global NWP. 
 
 
1.      INTRODUCTION 
 
Since the operational use of local AMVs by the ABM began in 1992 (Le Marshall et al. 1992), it has been 
known that careful q.c. of the winds is required to ensure a positive impact in regional and global data 
assimilation. Their “optimal” use is dependent on the characterization of errors associated with particular 
vector types. During production, vectors with unacceptably large (gross) errors are typically removed by 
examining the temporal consistency of the vectors (the acceleration check), the spatial consistency of the 
vectors (buddy checks) and by error estimates, based on comparison with the forecast model background 
field. (Le Marshall et al. 1994, 2002). The AMVs are expected to have spatially correlated errors because of 
the methods used in their generation and q.c.. For example, errors in image navigation can give rise to 
spatially correlated velocity errors. A forecast background field with spatially correlated errors is often also 
used for cloud and water vapour feature height assignment and can lead to correlated errors. Correlated 
error may also be produced by similar errors in height assignment of fleets of vectors associated with a 
given cloud area of uniform type. In such cases, height assignment and q.c. are both dependent on a 
forecast model with correlated errors.  Determining these gross and correlated errors is crucially important in 
data assimilation and NWP. 
 
Here, we examine the q.c., error characterization and assimilation of atmospheric motion vectors and 
demonstrate that the judicious application of q.c. and error estimation can improve the accuracy and error 
characterization of the AMVs. Subsequently we examine the effects of quality controlled AMVs from GOES-
9 on operational NWP in the Australian Region and we report on the impact of  AMVs derived from 
sequential MODIS imagery at NWP high latitudes. 
 
 
 



 
2.      QUALITY CONTROL AND ASSIMILATION 
 
Error determination and rejection in most real time AMV estimation systems are generally based on several 
elements. These include the correlation between the brightness temperature arrays of the search and target 
areas, the difference in meridional and zonal wind components of the two vectors from a tracer tracked in 
adjacent pairs of images, and the deviation of the calculated wind vectors from the first guess field. 
 
For data assimilation, data thinning is also required when using high density AMVs.  In practice, thinning is 
achieved by reducing data density to a separation suggested by the Length Scale of the Correlated Error 
(typically around 100 km).  This is usually achieved by preferentially selecting vectors of higher accuracy.  
The selection generally involves use of the Quality Indicator (QI), Expected Error (EE), Recursive Filter Flag 
(RFF), Error Flag (ERR) or other indicators of error level available with the vectors, and should result in an 
observational error level close to that of the background field.  The error levels of the data to be assimilated 
are generally chosen to be close to or lower than the background errors, particularly away from conventional 
observations, thereby facilitating improved prognosis.  It is also important in the analysis process to also 
exercise judicious quality control (such as gross error checks) to prevent poorly characterised vectors 
degrading the analysis. 
 
 
3.     THE QUALITY INDICATOR 

The Quality Indicator (QI), has recently been introduced to assist in data selection (Holmlund, 1998) and 
Holmlund et al. (2001).  The QI is associated with each AMV in the BUFR product from EUMETSAT and 
NESDIS.  The QI for each AMV is calculated by estimating direction consistency, speed consistency, vector 
consistency, spatial consistency and consistency with the operational forecast.  The degree of compliance 
with these five tests is then used to form a single QI. The QI has been beneficial in the application of high-
density winds, by providing a consistent estimation of the comparative accuracy associated with each vector.  
It is an essential error indicator for analysis using Global Telecommunication System (GTS) AMV BUFR 
data. The QI is also provided for all AMV types generated at the Bureau of Meteorology, using methods 
similar to those of Rohn et al. (1998) but without the additional (filter) checks now employed by EUMETSAT. 
Figure 1 is a plot of QI against RMS difference between low level infrared AMVs and radiosondes located 
within 150 km, using the one year period April 2000 – April 2001.  The use of the QI for data selection and 
error estimation can be improved further by combining it with other quality measures such as the Recursive 
Filter Flag (RFF) (Holmlund et al., 2001).  Note that, if QI is used rather than an expected error, then 
calibration curves similar to those of Fig. 1 need to be estimated for each vector type, for each wind 
producer. 
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Fig. 1. Quality Indicator (QI) versus 
root mean square difference 
(RMSD) with radiosondes within 
150 km for low level GMS-5 infrared 
image based AMVs for 28 April, 
2000 to 29 April 2001 

 



 
 4.       THE EXPECTED ERROR 
 
The Expected Error (EE), (Le Marshall et al. 2004) is calculated from the wind speed components, the wind 
shear, the pressure and the elements that make up the QI.  The elements of the QI have traditionally been 
used for q.c. of AMVs since the early 1980s and wind speed is known to be strongly related to AMV error.  
The vertical wind shear is also clearly related to AMV error, determining how height assignment errors 
influence AMV quality. Currently, least square regression is used operationally to compute the root mean 
square error in metres per second (ms-1) from the EE components.  Figure 2 (a) is a plot of the error 
calculated from the QI via a lookup table such as in Fig. (1).   Figure 2 (b) is a plot of the EE versus 
measured error. As suggested from a comparison of Fig. 2 (a) and 2 (b), the EE is on average a more 
accurate means of determining the observed error. 
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Fig. 2 (a): Predicted error using the QI 
lookup table. 

Fig. 2 (b): Predicted error using the 
EE approach. 

 

Table 1 further summarizes the results. In practice, the EE is also more efficient at data selection, for 
example, it provides well over 50% more vectors below threshold error levels typical of operational data 
rejection and also well over 50% more vectors at error levels associated with the background field. 
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Fig. 3 (a) The QI generated for AMVs over the 
Coral Sea on 7 November 2002 

Fig. 3 (b) The EE generated for AMVs over the Coral 
Sea on 7 November 2002 

 

5.      CORRELATED ERROR 

In addition to the Expected Error, a Correlated Error (CE) and a length scale (L) are associated with the 
vectors at the Bureau.  The CE has been computed using collocated, contemporaneous radiosonde and 
AMV observations from a match file. The approach used to derive the spatial variation of correlated error 
from the match file assumes that the observation errors from radiosondes are spatially uncorrelated. In this 
case, any observed correlation between the AMV and radiosonde differences in the U or V wind 
components is attributed to spatially correlated AMV errors. Grouping errors, associated with 
radiosonde/AMV pairs at the same time, by using separation distance allows a characterization of the 
average spatial structure of correlated errors for local GMS-5 AMVs. The method has been used widely and 
was discussed by Daley (1993). Extrapolation of the CE versus distance relationship to zero separation 
gives the magnitude of the spatially correlated AMV errors. The correlation function provides an estimate of 
the length scale of the CE. This length scale has been used as a basis for thinning appropriate in regional 
data assimilation. 
 
The observed data has been analyzed assuming an isotropic error correlation versus distance function, 
which is satisfactory for an initial application to data assimilation.  The correlation function used to 
extrapolate to zero separation is the second order auto-regressive (SOAR) function ( Daley, 1993). 
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4 (a) Error Correlation versus distance 
(10 km bins) for all High Level WV 
AMVs generated and those selected for 
NWP use (Ops) 

4 (b) Error Correlation versus distance 
(100 km bins) for all High Level WV 
AMVs generated and those selected for 
NWP use (Ops) 

 
The parameters of the SOAR functions fitted to the distance correlation functions for GMS-5 IR1, HRVIS and 
WV image based AMVs are seen in Tables 2 (a) and 2 (b) which provide R0, L, CE and root mean square 
difference (RMSD) compared to radiosondes using CGMS criteria, for non-zero and zero R00. 
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 R00 R0 L (km) Corr. Error 
(ms-1) 

RMSD (ms -1) 

Level Low High Low High Low High Low High Low High 
IR1 0.04 0.06 0.82 0.83 123.3 73.1 3.23 5.21 3.94 6.28 
HRVIS 0 0.01 0.96 0.70 127.2 82.9 3.54 3.82 3.69 5.46 

Level Mid High Mid High Mid High Mid High Mid High 
WV 0 0.02 0.67 0.91 95.1 84.8 3.49 4.39 5.21 4.82 
ble 2 (a) Parameters of the SOAR function (Equation 1) which best model the measured error 
rrelations for the AMV types listed in the left-hand column  
 R00 R0 L (km) Corr. Error 
(ms-1) 

RMSD (ms -1) 

Level Low High Low High Low High Low High Low High 
IR1 0 0 0.84 0.82 141.4 94.3 3.31 5.15 3.94 6.28 
HRVIS 0 0 0.96 0.70 127.8 85.1 3.54 3.82 3.69 5.46 

Level Mid High Mid High Mid High Mid High Mid High 
WV 0 0 0.51 0.92 95.1 88.9 3.49 4.43 5.21 4.82 
ble 3 (b) Parameters of the SOAR function (Equation 1) which best model the measured error 
rrelations for the AMV types listed in the left-hand column. R00 is assumed to be zero. 

e above analysis shows length scales (L) to be larger at lower levels in this data set. Upper length scales 
r a given R00 are similar while, at lower levels, HRVIS displays a larger length scale than those for IR1 and 
V. In comparison with the lower resolution statistics (100 km bins) of Bormann et al. (2003), the length 
ales here are shorter and CE and R0 are larger, a result aided by 10 km bins. Note that, in this study. 
wer level vectors appear to have a larger average L and vectors selected via error using QC and EE 
igher quality vectors) for NWP use, have shorter average length scales associated with their CE. 

.      APPLICATION OF GOES-9 AMVs 

OES-9 was moved along the Equator to 155° E, 0° S in 2003 and has been operated over the Western 
acific, Asia and the Australian Region as the primary geostationary meteorological satellite by the joint 
fort of JMA and NOAA/NESDIS. Since 22 May 2003, GOES-9 GVAR data have been received via direct 
adout by the ABM and the calibrated and navigated radiance data (imagery) has subsequently been used 



to calculate AMVs. These operational AMVs are important to Australian region NWP as no other AMV data 
are available within operational cut-off times. The method used to determine atmospheric motion differs from 
that usually employed for GOES series satellite data, particularly in height assignment, error characterization 
and q.c. The AMV data have been used in a real time trial to gauge their impact on operational regional 
Numerical Weather Prediction (NWP). Their clear benefit is described below. As a result of this trial these 
vectors are now being used in the National Meteorological and Oceanographic Center (NMOC ) for 
operational regional NWP. 
 
 
7.      GOES-9 ATMOSPHERIC MOTION VECTORS 

After GOES-9 replaced GMS-5, methods related to those employed at NESDIS (Daniels et al. 2000) and 
also at the ABM (Le Marshall et al. 2000) have been used to determine AMVs from GOES-9 GVAR data 
received at the ABM’s groundstation at Crib Point. In this system, target selection commence with a search 
for tracers in the11µm (channel 4) infrared images using bidirectional brightness temperature gradients in 15 
x 15 pixel boxes. Gradients are examined to ensure that cloud edges are being tracked.  Prospective targets 
are subjected to a spatial coherence analysis (Coakley and Bretherton, 1982) and then tracked using a 
lagged correlation technique. After the tracers are selected, the three sequential GOES-9 infrared images 
are carefully navigated using matching of land features. The height assignment method used for upper level 
AMVs is similar to on Nieman et al. (1993). The technique employed is the H2O-intercept method, using 11 
µm (channel 4) observations and the 6.7 µm (channel 3) observations. Radiances from the infrared and 
water vapour channels are measured and compared to calculate Planck blackbody radiances as a function 
of cloud top pressure. The cloud top altitude is then inferred from a linear extrapolation of radiances onto the 
calculated curve of opaque cloud radiances, providing the target altitude.  The temperature profile used in 
this process comes from the operational regional forecast model. No subsequent adjustment (autoediting) of 
the vector altitude occurs for GOES-9 AMVs to make them more consistent with the information in the 
forecast field guess fields. 
 
The low-level AMV altitude assignment technique is similar to that developed in the ABM (Le Marshall et al. 
2000) where cloud altitude is assigned to the cloud base for low-level vectors. No subsequent adjustment 
(autoediting) of the vector altitude occurs for GOES-9 AMVs to make them more consistent with the 
information in the forecast first guess fields. 
 
An example of the wind observations generated around 22 UTC on 2 July 2003 in the Australian Region is 
seen in Fig. 5.  
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Fig. 5 A selection of GOES-9
AMVs calculated around 22 UTC
on 2 July 2003. Magenta denotes
upper level tropospheric vectors
(above 500 hPa), yellow lower
level tropospheric vectors
(below 500 hPa) 
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8.      THE OPERATIONAL TRIAL 

 
GOES-9 No. Obs MMVD (ms-1) 

Low 950 – 700 hPa 431   3.64   
Middle 699 – 400 hPa 82   4.00   
High 399 – 150 hPa 1759   4.58   

 
Table 3   Mean Magnitude of Vector Difference (MMVD) between GOES-9 AMVs and 
radiosondes winds within 150 km in the Australian Region for 9 June to 30 June 2003 
 

8.1     The Assimilation System 

The assimilation methodology employed the real time operational NMOC regional Limited Area Prediction 
System (Puri et al. 1998), using all available data (including JMA winds which were available for the second 
last analysis in the cycle) as the control. The analyses on which the forecasts reported here are based start 
with a Bureau global analysis (Seaman et al. 1995), valid 12 hours prior to the forecast start time. This is 
used as a first guess to the regional analysis which then provides the base analysis for an initialized six hour 
forecast, a subsequent analysis and a further initialized six hour forecast. This forecast is then used as a first 
guess to the final analysis from which the 24 and 48 hour forecasts are run. Forecasts are nested in fields 
from the most recent Bureau global model forecast (Bourke et al. 1995). 
 
8.2     Method 

GOES-9 AMVs generated using 11 µm (Ch. 4) and 6.7 µm (Ch. 3) images were added to the operational 
regional assimilation system. The methodology was similar to that used in Le Marshall et al. (2002).  The 
accuracy of real time AMVs provided to the assimilation system for use in this experiment in mid-2003 is 
summarized in Table 3.  Local quality control (Le Marshall et al. 2002) methods were used to provide vectors 
with expected error consistent with the error levels expected for AMVs in the operational analysis for low, 
middle and high level vectors, respectively.   
 
A series of parallel real time forecasts were run using the operational forecast system as the control.  The 
difference between operational and experimental real time systems was that local GOES-9 AMVs were 
added to the data base in the experimental system.  The experimental period was from 00 UTC on 9 June to 
00 UTC on 30 June 2003 (36 cases). The experimental period was not overly long but encompassed a wide 
variety of synoptic patterns in the Australian Region from zonal flow to highly unusual blocking sequences, 
including a Tasman Sea cut-off low.  
 
8.3     Results 
 
The S1 skill (Teweles and Wobus, 1954) scores for 24-hour and 48-hour forecasts from using GOES-9 AMV 
data are compared to the operational skill scores in Table 4. The statistics are consistent with those 
recorded in earlier impact studies with GMS-5 (Le Marshall et al. 2003). 
 

LEVEL (LAPS) S1 (LAPS + GOES-9 AMVS) S1 
24-hr. forecast 48-hr. forecast 24-hr. forecast 48-hr. forecast  

MSLP  
850 hPa 
500 hPa 
300 hPa 

19.6   
16.6   
14.1   
12.3   

30.1    
27.5    
22.2    
18.9    

18.6    
16.4   

13.8    
12.1    

29.5   
26.5   
21.5   
18.5   

 
Table 4.  24 hr forecast verification (S1) for the operational regional forecast system (LAPS) and LAPS with 
GOES-9 based AMVs for 9 June to 30 June 2003 (36 cases) 
 
The results from this real time experiment are also illustrated in Figs. 6 to 8.  Fig. 6 shows a plot of the 
operational skill scores versus the skill scores from the operational system with GOES-9 AMVs in its 
database.  Points below the diagonal indicate an improvement in accuracy.  It can be seen that a clear 
majority of points lie below the line and, in particular, that most improvement occurs at the higher values of 
the S1 Skill Score, i.e. in the lower atmospheric levels for poorer forecasts. 
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9.      APPLICATION OF MODIS POLAR AMVs

Winds generated by NOAA NESDIS, (Daniels et al., 200
instruments on the TERRA and AQUA satellites in the IR
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Special Acquisition Period), namely 1 January  to 15 F
NESDIS MODIS AMV system used to generate these
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Further quantification of this impact is continuing and it is anticipated these data will be included in the 
Operation Forecast Suite during the next system upgrade at NCEP. 
 
 
10.     SUMMARY AND CONCLUSIONS 

In this study we have described methods used by the ABM in the production, q.c. and error characterization 
of local AMVs and have demonstrated that q.c. and error characterization are vital components of the AMV 
generation process.   A new method of error characterization, the Expected Error (EE) which provides the 
error associated with each AMV has been noted. The method predicts the errors associated with AMVs  
more accurately than other methods in common use.  Use of the EE results in improved data coverage at a 
given error level or the same data numbers with improved accuracy.  In addition, the estimated error (EE) of 
each vector can be used directly in the analysis process and all AMVs can be treated in a similar fashion. 
Moreover, there is no need for all users to derive, or to receive QI calibration curves for each producer and 
for each wind type. The characteristic length scale (L) and correlated error (CE) have also been estimated 
and allow AMVs to be characterized by EE, QI, RFF and also their CE and L. The EE, R0 and L can be used 
directly in the analysis process.  
 
The local estimation of real time operational GOES-9 AMVs and their impact on regional NWP has also 
been described. Experiments using these data in a real time NWP trial have been summarized. The clear 
benefit of these data to operational regional NWP has been recorded. These results have led to the 
introduction of these winds into NMOC’s operational database and their use in operational regional NWP 
since August 2003. A recent experiment using MODIS AMVs over high latitudes has also been described.  
The positive impacts recorded over northern and southern high latitudes have led to these winds being 
accepted for inclusion in the operational data base at the next operational upgrade at NCEP. 
 

Looking ahead, the continuing trend to space-based observations with higher spatial, temporal and spectral 
resolution should enable improved estimation of atmospheric motion and result in quantitative benefit to 
NWP. In particular, the prospects of significant benefits from the use of sequential observations from 
MTSat-1R, which will have similar observational capability to GOES-9 and new generation ultra-spectral 
instruments such as the Geostationary Imaging Fourier Transform Spectrometer (Smith et al. 2000) are very 
good. 
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