
Motion Vectors in Weather Radar Images

M. Peura and H. Hohti

Finnish Meteorological Institute, Remote Sensing for Weather Applications
P.O. Box 503 (Vuorikatu 24) 00101 Helsinki, Finland

Abstract

In this paper, we discuss the extraction motion vectors in weather radar images. Our goal is to
provide fast computable but still reliable nowcasting of precipitation. The problem is analogous to mo-
tion extraction and extrapolation in satellite images, especially in cases where background has been
screened off by some method. Our emphasis is on optical flow algorithm, which is an alternative to
autocorrelation based motion detection algorithms. For implementation, we suggest fast, sliding-window
based computing techniques as well as usage of data quality information.

1 Introduction

In forecasting precipitation for the next couple of hours, direct radar data extrapolation typically is superior
to numerical weather forecasting models. The processed radar images are typically at least 1000×1000
pixels large and the required maximal processing time is around a minute. These preconditions require
efficient algorithms in motion extraction (and extrapolation).

In weather radar measurements, two principal types of motion can be observed. First, there is
average water droplet motion that can be observed by means of a Doppler radar network. Second,
there is the motion of a precipitation area that appears in a sequence of radar images. When nowcasting
precipitation, the latter type is more important.

Both of these motion types are affected by winds, but in a different manner. In the case of water
droplets a practical assumption is that their motion approximates the wind and hence apply Doppler
radar for measuring (radial) wind speeds. The assumption is valid especially when measuring horizontal
motion of small droplets. On the other hand, in the motion of the precipitation area, the affect of winds
is often overridden by atmospheric dynamics generating the precipitation. Furthermore, motion tends to
diverge into different scales and phenomena. For example, areas of frontal rain, areas of (embedded)
convection, and separate convective cells may have motions of their own.

Next, we briefly review the autocorrelation based forecasting facility applied in the FMI. In the rest of
the paper we focus on the optical flow algorithm, first reviewing the basics and then suggesting details
in the implementation.

1



2 Autocorrelation based techniques

The precipitation forecasting application used in FMI is based on the EUMETSAT motion vector package
designed by Holmlund (2000) who also provided the modifications required by radar data. The obtained
precipitation forecast is one of the most popular WWW broducts at the FMI. A sample scene is shown in
Fig. 2.

Observation at 13 UTC Forecast for 17 UTC made at 13 UTC Observation at 17 UTC

Figure 1: Sample images from the operational precipitation forecasting facility of the FMI.

The motion detection of precipitating areas is done in four 16x16 1km pixel grids having 8 km offsets
each. As a first guess, the detection is done using unfiltered reflectivity data. The half-hourly time series
of first guess vector fields are used to analyze vector qualities and components and their spatial and
temporal variations.

The result of the time series analysis can be used as an input to the anomaly detection and removal
process. As part of this process, the vector field characteristics are used to determine the probabality of
echoes belonging to ”naturally moving” precipitating ones. As a side effect, this also helps the classifi-
cation of anomalous echoes having more or less chaotic behaviour from the movement detection point
of view.

Finally, the best guess motion vector field of precipitating echoes can be obtained directly from the
analysis of first guess fields, or it can be done separately (or even iteratively) using anomaly free data.
Before using it as an input to the nowcasting process, the vector field has to be interpolated to spread
the field over non-precipitating areas. This is necessary, because trajectories for up to four forecast
hours has to be extended outside the precipitating areas also.



3 Optical flow — basics

In computer vision, optical flow is one of the standard techniques in computing motion vectors from
two subsequent images (Sonka et al. 1993, J. L. Barron and Fleet 1994). The underlying idea is to
explain observed temporal and spatial derivatives with a continuous motion field — a flow. The model
is analogous to meteorogical advection models, which suggest using this approach in related imageries
as well.

More formally, the flow of quantity f = f(x, y, t) can be modelled as

df

dt
=

∂f

∂t
+

∂f

∂x

∂x

∂t
+

∂f

∂y

∂y

∂t
= ft + fxu + fyv = ft +∇f · v. (1)

where df/dt is the change observed in the coordinates of the flowing data and the partial derivatives
indicate the changes in the rigid (image) coordinates. To illustrate, one may think about staring at a
fixed position in a flow image frame and observing how f changes along a slope of the data flowing past
that point: the observed change ∂f/∂t is a function of the slope steepness ∇f and the flow velocity
v = [u v]T in that point, plus a possible change in the data itself, df/dt.

Approaching practical remote sensing problems, we replace the continuous data field by digital image
f and redefine fx = (f(x + 1, y, t)− f(x− 1, y, t))/2 and fy = (f(x, y + 1, t)− f(x, y− 1, t))/2. Likewise,
we introduce difference image ft = f(x, y, t) − f(x, y, t − 1). We assume further that all changes in
intensity are explained by motion, that is, there are no changes in the data: df/dt ≡ 0. Hence we have

∇f · v + ft = 0 (2)

As this single equation contains two unknowns (u and v), there are infinitely many solutions. The
technique discussed by J. L. Barron and Fleet (1994) applies a neighbourhood Ω of point (x, y) and
yields an overdetermined flow equation set which leads to cost minimization of type

C =
∑
Ω

w · (∇f · v + ft)2 (3)

where weight w can be a function of image coordinates and/or neighborhood coordinates. In matrix
form, derivation with respect to v yields

GW
[
GTv + ft

]
=

[
0
0

]
. (4)

where G = [∇f(1) ∇f(2) · · · ∇f(n)], W = diag(w(1) w(2) · · · w(n)) and ft = [ft(1) ft(2) · · · ft(n)]T where
indices 1...n refer to the pixels in neighbourhood Ω.

Finally, we obtain the solution
v = −(GWGT)−1GWft (5)

which is computationally light as GWGT is 2× 2 and GWft is 2× 1.
An image extrapolated with motion vectors obtained with optical flow is shown in Fig. 3. However,

this result was not obtained by direct application of (1) but with some further algorithm design, which are
discussed next.



Input f−1 Input f

Extrapolation f+4 Extrapolation f+8

Figure 2: Samples from an image sequence {f+1, f+2, ...} extrapolated from f−1 and f .

4 Optical flow — implementation

4.1 Preprocessing by smoothing edges

The basic version (1) of optical flow applies well to data that is indeed flow-like: smoothly continuous
and hence differentiable. Problems arise when images f(x, y, t) are not continuous but contain distinct
objects with crisp edges. Frequently, image object/segment displacements between subsequent image
frames may be larger than the scope of the applied neighborhood Ω. Hence, the algorithms tries to
match objects against empty image regions and fails to get any clue of directions.

To overcome this problem, one can smoothen the input images with a rectangular averaging window
or a gaussian blurring. As a result, the edges will not only become “more differentiable” but also extend
the effective scope of the objects.



It should be pointed out that while smoothed images serve as input in motion extration, original
unsmoothed data is used in extrapolation. This is illustrated in Fig. 4.1.




�

	

�
-

-



�

	
�

�
�

�
�

�
�

�
��+

S
S

S
S

SSw

?
Q

QQs
�

��+
Q

QQs
�

��

�
����

? ?
6

- -



�

	
�

�
�

�
�

�
�

��=

@
@

@
@

@@R
�����������1

A
A

A

A
A

A
AK




�

	

�

Extrapolation

v

w

ff
−1

f t
fx f y

f−1 f f+1

f
−1

yf
−1

x

q

Smoothing

G

ft

W
−(GWGT)−1GWft

Optical Flow |GWGT|

Figure 3: Suggested processing scheme. The previous, current and predicted images are denoted by
f−1, f and f+1, respectively.

On the other hand, one should not use too large radii in pre-smoothing because the solution (5)
requires that image window Ω contains pixels with independent gradient information (stricly speaking, at
least two pixels!).

As as solution, we suggest multicale smoothing, which means blurring the orginal image f with a
averaging window operator B and mixing the result in the original image: f = cf + (1 − c)B{f} with
some c ∈]0, 1[. (One can apply this recursively.) The resulting image contains both original details and
smoothed regions.

Figure 4: Original and multi-scale smoothed radar image.



.

4.2 Accelerating smoothing by window decomposition

Image processing operations engaging computation of cumulants can be often accelerated. For exam-
ple, blurring an N×N image with an n×n window using a brute force algorithm, hence with four nesting
loops (for i..., for j..., for k..., for l...), requires a computational effort of order O(N2n2).
However, the same result can be obtained by two subsequent averagings of window dimensions n × 1
and 1×n, with effort of O(N2n). Moreover, using a sliding window technique, that is, by incrementally up-
dating the intensity sum in a window, the computational effort drops down to O(N2 +2n) ≈ O(N2) which
is remarkable in the case of large n. For example, using 33 × 33 window, a sliding window technique is
about thousand times faster than the brute force implementation!

4.3 Accelerating the computation of GWGT and GWft

To maximize processing speed, the matrices of optical flow solution ?? should be written out in the
program code. Introducting cumulants Gxx =

∑
wfxfx, Gxy =

∑
wfyfx, Gyy =

∑
wfyfy, Gxt =∑

wfxft, and Gyt =
∑

wfyft (all within Ω) we can write

GWGT =
∑
Ω

[
wfxfx wfyfx

wfxfy wfyfy

]
=

[
Gxx Gxy

Gxy Gyy

]
(6)

and

GWft =
∑
Ω

[
wfxft

wfyft

]
=

[
Gxt

Gyt

]
(7)

and finally

v =
1

G2
xy −GxxGyy

[
GyyDx −GxyDy

−GxyDx + GxxDy

]
(8)

The crucial point here is that if w = w(x, y, t) in image coordinates (or a constant), also these
cumulants can be updated using a sliding-window technique, yielding complexity O(N2n) instead of
O(N2n2). (If w = w(i, j) in Ω coordinates, sliding is impossible.) Next, we suggest outlines for w =
w(x, y, t).

4.4 Application of quality information

In many applications, we may have quality (confidence, probablity,...) information available. Such in-
formation may be provided readily in parallel with input data or the algorithms prosessing the data may
generate it with neglible extra effort. The challenge is to pick up good quality functions and well use the
information in further data processing.

As quality information for the optical flow algorithm, we suggest using a “gradient stability measure”,
for example w(x, y, t) = ||∇f(x, y, t)−∇f(x, y, t− 1)|| (See Fig. 4.1 and Fig. 4.4). Zero or small gradient
change tells that that we are (probably) still “sensing the same cloud” while changed gradient means
that the cloud has gone past (x, y).



Gradient quality ||∇f2 −∇f1|| Velocity quality |GWG|

Figure 5: Examples of quality information that can be extracted in the optical flow computation.

5 Conclusions

In this paper, we discussed motion vector extraction from subsequent images. Although our application
context is in weather radars and related forecasting products, the demonstrated techniques are clearly
applicable in satellite imageries and in remote sensing imageries more generally.

Autocorrelation is a straightforward, theoretically well-motivated technique for motion detection. At
the FMI, it has been succesfully applied in forecasting precipitation up to 2–3 hours. However, since 2D
autocorrelation is essentially an image matching technique, it is computationally heavy.

In time critical applications, optical flow should be considered as an alternative method. Also its
underlying “physical” model suggest adaptability to meteorological image extrapolation problems.

As with autocorrelation, practical implementation of the core equations of optical flow needs some
additional computation to actually work. In this paper, we outlined efficient data smoothing and quality-
weighted computation schemes. The results obtained this far encourage continuing this research. In
the future, we will develop the overall scheme and study parameter selection. As to applications, we will
study separate processing for convective and widespread rain as well as detection of divergence and
convergence.

References

Holmlund, K. (2000). The atmospheric motion vector retrieval scheme for meteosat second generation,
Proceedings of 5th International Winds Workshop, Eumetsat.

J. L. Barron, S. S. B. and Fleet, D. J. (1994). On optical flow, in I. Plander (ed.), 6th Int. Conf. on Artifi-
cial Intelligence and Information-Control Systems of Robots (AIICSR), World Scientific, Bratislava,
Slovakia, pp. 3–14. Sept. 12-16, 1994, Smolenice Castle, Slovakia.

Sonka, M., Hlavac, V. and Boyle, R. (1993). Image Processing, Analysis and Computer Vision, Chapman
& Hall Computing.


