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Abstract 
 
Feature tracking is a key step in the derivation of Atmospheric Motion Vectors (AMV). Most 
operational derivation processes use some template matching technique, such as Euclidean distance 
or cross-correlation, for the tracking step. As this step is very expensive computationally, often short-
range forecasts generated by Numerical Weather Prediction (NWP) systems are used to reduce the 
search area. Alternatives, such as optical flow methods, have been explored, with the aim of 
improving the number and quality of the vectors generated and the computational efficiency of the 
process. This paper will present the research carried out to apply Stochastic Diffusion Search, a 
generic search technique in the Swarm Intelligence family, to feature tracking in the context of AMV 
derivation. The method will be described, and we will present initial results, with Euclidean distance as 
reference. 
 
 

1. INTRODUCTION 
 
Feature tracking is a key step in the derivation of Atmospheric Motion Vectors (AMV), and most 
operational derivation processes use some template matching technique for this step. Euclidean 
distance and cross correlation are two widely used template matching techniques, described e.g. in 
Dew and Holmlund (2000). These methods are computationally expensive, and often a short-range 
forecast wind field produced by a numerical weather prediction (NWP) system is used to reduce the 
search area. 
 
Other tracking methods have been explored with the aim of improving the quality and quantity of the 
generated AMVs and/or decreasing the computational cost of the feature tracking step, which is the 
most expensive component of the overall AMV derivation process. During the last decade, optical flow 
methods (e.g. Bresky and Daniels, 2006) have been the main alternative to traditional template 
matching methods for calculating motion vectors. However, feature tracking has not attracted as much 
attention as e.g. height assignment from the AMV research community. Although traditionally feature 
tracking and height assignment have been considered as independent steps in the derivation process, 
recent research by Borde and Oyama (2008) proposes a link between the two steps, and uses the 
pixels with the highest contribution to the correlation in feature tracking for the height assignment. 
 
The problem of calculating motion vectors through template matching techniques can be seen as a 
search problem. Once a target template has been selected in an image i1, we look for its best match 
in the following image, i2, in a search area determined e.g. by the maximum expected wind or by the 
maximum expected departure from a forecast wind (if a NWP-generated wind field is used). An 
objective function, such as Euclidean distance or cross correlation, describes the similarity between 
the target and potential matches. We can visualise those functions defined on the search space as 
similarity or correlation landscapes. If cross correlation is used, we look for the global highest hill in the 
landscape, and if Euclidean distance is used, we look for the global minimum of the landscape. 
 



Stochastic Diffusion Search (SDS), originally developed by Bishop (1989), is a global search 
technique in the swarm intelligence family. Swarm intelligence techniques are population-based, and 
the problem-solving abilities of the system emerge from simple individual behaviour and interaction 
within the collective.  
 
This paper reports on a research project that started recently as a real-life, challenging application of 
SDS, and whose purpose is to explore the potential of SDS to address feature tracking in the context 
of AMV derivation. Section 2 describes the SDS algorithm, and chapter 3 discusses SDS as a 
potential framework to tackle feature tracking. Section 4 presents some early results and section 5 
concludes the paper. 
 
 

2. STOCHASTIC DIFFUSSION SEARCH  
 
Stochastic Diffusion Search (SDS) can be applied to search problems for which the objective function 
that evaluates the quality of candidate solutions can be decomposed into independent elements or 
micro-features. SDS is based on a population of agents that can perform partial evaluations of 
candidate solutions to the search problem and can communicate with other agents in a simple way. It 
was originally developed as a pattern recognition technique to deal with the problem of stimulus-
equivalence, and has since then been extended, analysed and applied to real-world problems. A 
recent description is given by De Meyer et al. (2006). In particular, it has been applied to feature 
tracking to locate features of human faces in video images (Grech-Cini and McKee, 1993; Bishop and 
Torr, 1992). 
 
The standard SDS algorithm is shown in pseudo-code in Table 1. Initially, agents are spread randomly 
over the search space, i.e. each agent selects randomly a candidate solution (or location, or 
hypothesis) from the search space. After the initialization, there is an iterative process; each of its 
steps consists of two phases. During the first phase, called test phase, each agent randomly selects a 
micro-feature, i.e. an element of the objective function, and performs the partial evaluation of the 
location corresponding to the selected micro-feature; in standard SDS the result of such an evaluation 
can only be either successful or unsuccessful. If the evaluation is successful the agent becomes 
active, and otherwise it becomes inactive. Active agents keep their hypotheses for the next iteration. 
During the second phase, called diffusion of information, inactive agents replace their hypotheses with 
new ones, in the following way: each inactive agent A contacts randomly another agent; if the agent 
contacted is active, agent A copies its hypothesis, and if the agent contacted is inactive, agent A 
selects randomly a new hypothesis from the search space. The process continues until some 
appropriate terminating condition is met. 
 
 

 
  1 - All agents select hypothesis/location, randomly 

  2 - Loop (until some terminating condition is met) 

      # Test phase – loop on all agents 

        * Each agent selects and evaluates a micro-feature.  

        * If OK, agent is said to be active, otherwise inactive. 

      # Diffusion of information – loop on inactive agents 

        * Each inactive agent selects randomly another agent.  

        * If agent contacted is active, its hypothesis/locations is  

          copied, otherwise a new location is randomly selected. 

      End loop 

 

 
Table 1:  pseudo-code for the standard SDS algorithm. 

 
 
During the diffusion phase, inactive agents move to different locations, i.e. select new hypotheses. In 



the beginning, few agents are active, and consequently most of the inactive agents explore the search 
space randomly. Therefore, most of the computational resources are spent on the exploration of the 
search space. As the process continues, more agents become active, i.e. find promising locations, 
which attract more agents during the diffusion phase. This is a positive feedback mechanism that 
ensures the eventual concentration of agents in the optimal locations (i.e. the agreement of agents on 
the optimal hypotheses). On the other hand, in each iteration, each active agent randomly selects a 
micro-feature, and performs the corresponding partial evaluation of the agent’s current location; this 
ensures that agents are not stuck in suboptimal locations.  
 
Standard SDS does not make any assumptions about the search space and it is essentially a random 
search. What makes SDS different of other generic search techniques is that agents only perform 
partial evaluations of the objective function. Computational resources are not wasted on unpromising 
candidate solutions, which makes SDS an efficient technique for search problems where the full 
evaluation of the objective function is computationally expensive.  
 
 

3. SDS AS A FRAMEWORK FOR FEATURE TRACKING 
 
SDS is essentially a generic framework to address search problems. To that framework we need to 
add an appropriate objective function that measures the suitability of candidate solutions to a 
particular search problem. The choice of such a function is domain-dependant, and when thinking of 
possible alternatives there are two main questions to consider: 

1) In which conditions will the optimal location (which depends on the similarity function) provide a 
good solution to the problem in the application domain? 

2) How does it affect the computational cost of the calculation of the optimal location? 
 
The first question may look unnecessary, but it becomes clear that it is an essential point when we 
translate it to the application domain: in which conditions would the solution to the search problem 
yield a good estimate of atmospheric wind? Different objective functions, including Euclidean distance 
and cross correlation, may give different estimates of displacement. 
 
In this study we have considered two objective functions to use with the SDS framework, both defined 
in terms of partial evaluations. In the following definitions we use i and j to denote pixels (i.e. image 
coordinates) and v to denote image displacements (i.e. all i, j and v are 2-dim vectors), and T with a 
suitable subscript to denote a partial evaluation of the similarity function. The search space is 
therefore 2-dimensional and a point in the search space represents a motion vector in the sequence of 
images. 
 
Function F1 - a micro-feature is associated to a pixel i in the template box. We define the partial 
evaluation Ti(v) of a displacement v in the following way: Ti(v) is positive if  

| Rad1(i) - Rad2(i+v) | < ε, 

for a suitable ε > 0, where Rad1 and Rad2 represent radiance values in the first and second images, 
respectively. 
 
Function F2 - a micro-feature is associated to a pair of pixels i, j in the template box. We define the 
partial evaluation Tij of a displacement v in the following way: Tij(v) is positive if  

Sign ( Rad1(i) - Rad1(j) ) = Sign ( Rad2(i+v) - Rad2(j+v) ). 
 
A useful concept to discuss results is the test score of a location v. Given an objective function 
decomposable into micro-features, the test score of a location is the percentage of micro-features that 
would result in a positive evaluation of that location. 
 
It has been mentioned earlier here that standard SDS is essentially random search and it does not 
make any assumptions on the nature of the similarity or correlation surface. However, in the case of 
AMVs these surfaces are smooth. Around the best location there are good locations, so good 



locations can be used to drive the search process by increasing the probability or selection of 
neighbour locations. Standard SDS can be modified so that the a priori knowledge of the nature of the 
similarity surfaces can be exploited to improve the efficiency of the search. 
 
 

4. PRELIMINARY RESULTS 
 

We have used WV 6.2 µm Meteosat-9 images for the tests. We chose to use this imagery in order to 
simplify the problem as much as possible, avoiding complications such as coastlines and multilayer 
situations. 
 
For the first set of tests we produced an artificial sequence based on a real image (see figure 1). It 
was used as the first image in the sequence; the second image was created by applying a predefined 
displacement to the first (5 pixels in the East direction and 7 pixels in the South direction). This setup 
is not realistic, but it was very useful to test the software system developed for the experimentation. 
We used three types of similarity functions: the one-pixel and the two-pixel functions defined in section 
3, both based on the SDS-framework, and Euclidean distance (mainly for comparison). The size of 
boxes was 16*16 pixels in all tests, and only boxes fulfilling the condition “contrast > 48 & standard 
deviation > 8“ were selected as targets for matching. The selection is illustrated in the figure: the 
origins of vectors are the centres of those boxes fulfilling the selection conditions. The choices on box 
size, contrast and standard deviation are just practical values to start with the experimentation. 
 
 

 
 

Figure 1:  Meteosat-9 WV 6.2, 17 July 2007, around 10 UTC, North Atlantic. Superimposed motion vectors calculated 
from an artificial unrealistic sequence. 

 
 
Although tests run with the artificial sequence were useful, the setup is not realistic. Unlike with a real 
sequence, there is exactly one perfect match for every target. The three objective functions produced 
exactly the same (“true”) motion vectors for every target. Regarding computational costs, SDS-based 
functions were 5 to 10 times faster than Euclidean distance. However, this is not representative, partly 
because implementations were not optimised, but mainly because the convergence of the SDS-based 
methods is very fast when there is a perfect match (once an agent enters a perfect location, it stays 
there and attracts other agents). 
 
A second set of tests was prepared with a real sequence of two images (the image in figure 1 and the 
real subsequent Meteosat-9 image, 15 minutes later). In this case, as there is no perfect match, the 



application of selection conditions is essential in order to obtain meaningful motion vectors. Figure 2 
shows similarity surfaces, for the three functions, for a 16*16 template situated in the upper left corner 
of the image and satisfying the target selection conditions. The size of the search space is (-20, 20) 
pixels in both x and y directions. The two main points to mention, regarding the calculation of motion 
vectors are: 1) different similarity functions often yield different motion vectors (although they are 
usually very similar), and 2) convergence of SDS-based methods is slower than in the first set of tests.  
 
 

 
 
Figure 2: similarity surfaces for a) one-pixel similarity function (upper picture), b) two-pixel similarity function (middle 

picture) and c) Euclidean distance (lower picture). See main text for location of target and size of search space. 



 
 
Figure 3 shows a similarity surface for a box, from the middle left part of the image (in figure 1), 
selected intentionally so that it does not satisfy the target selection conditions. Unlike the surfaces 
presented in figure 2, the area representing the best matches is flat and wide, like a plateau. Only the 
surface associated to the one-pixel SDS-based function is shown here, but the two other functions 
also showed plateau-like surfaces, although different from each other.  
 
 

 
 

Figure 3:  similarity surfaces for the one-pixel function. See main text for location of target and size of search space. 

 
 

5. CONCLUDING REMARKS 
 
This paper has presented the research carried out to explore the use of Stochastic Diffusion Search 
as a framework to tackle feature tracking in the context of AMV derivation. The research is in early 
stages, and the work done so far has brought several basic (and old) issues to the front: 

• First of all, what is exactly a motion vector? Motion vectors are not uniquely determined by the 
sequence of images: both the box size and the function representing similarity between boxes 
affect the resulting motion vectors. 

• In which conditions is a motion vector a good estimate of atmospheric wind? At which scale? 

• How to characterise targets likely to yield, when using an appropriate similarity function, a good 
motion vector, i.e. good estimate of atmospheric wind? 

• Given suitable targets, which objective functions are likely to yield good motion vectors? How does 
the choice of the function affect the computational efficiency? Can the choices of objective 
function and target selection procedure be independent? 

• Finally, would an alternative mathematical representation of the radiance field be more 
appropriate? Different representations (e.g. wavelets or Fourier expansion) would allow the 
definition of different objective functions, perhaps more appropriate than those considered here. 

 
Plans for the future include exploring the issues mentioned above. The research work could also be 
extended in other directions: 

• Apart from displacements, also rotation and deformation could be included as possible 
transformations. An extension to 3, 4 or 5 -dimensional search spaces would be natural within the 
SDS framework. 

• The basic search framework can be modified in such a way that the process is able to "sense" the 
characteristics of the similarity landscape and adjust itself to it accordingly. 
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