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ABSTRACT 
NWP forecast skill is partly controlled by the quality of the initial state, or analysis. In variational data 
assimilation schemes the analysis is derived by minimizing a cost function made up of a departure 
from the background and a departure from the observations. How close the analysis pulls towards the 
observations is determined by the balance of observation errors and model background errors. If the 
observation errors are set too low the observations are given too much weight which can have a 
detrimental impact on the quality of the analysis, too high and the observations are less able to correct 
errors in the background. The observation errors are therefore a fundamental and very important part 
of the assimilation.   
 
AMVs have complicated error characteristics. Despite this most NWP centres, including the Met 
Office, only allow the errors to vary with pressure. Can we do better? One option is to generate 
individual observation errors for each wind using information on the quality of the AMV vector and 
height assignment.   
 
In this paper we will describe the proposed approach to generate individual observation errors, show 
initial impact trial results and discuss options for how to take this work forward. 

 
AMV ASSIMILATION AT THE MET OFFICE 
The Met Office global NWP model uses a 4D-Var data assimilation scheme (Rawlins et al., 2007). At 
the Met Office we assimilate IR, cloudy WV and VIS winds from Meteosat-9, Meteosat-7 and MTSAT-
1R; IR and cloudy WV winds from GOES-11 and GOES-12 and IR, cloudy WV and clear sky WV 
winds from Terra and Aqua (NESDIS and direct broadcast).  For more details see the Met Office AMV 
usage page on the NWP SAF website.  
 
The AMV assimilation approach at most NWP centres involves applying quality indicator thresholds, 
spatial and temporal blacklisting, thinning the data (typical scale of one observation per 200 km by 200 
km by 100 hPa box) and removing data which deviate too far from the background.  The AMVs are 
generally treated as point observations in space and time, although neither assumption is true.  The 
observation errors typically vary only with pressure (those used at the Met Office are shown in table 1) 
and are calculated from O-B statistics, but inflated to alleviate problems with correlated error (e.g. 
Butterworth et al. 2002). The result of the quality control is to remove the majority of the observations.  
At the Met Office typically only 2% remain (e.g. Figure 1). 
 
Level (hPa) 1000 850 700 500 400 300 250 200 150 
Error (m/s) 3.6 2.8 4.0 4.8 6.2 6.2 5.6 5.8 6.6 

Table 1: AMV observation errors used in the Met Office models. 
 

 

               
Figure 1: Data coverage plots showing extracted AMV data (left) and assimilated data (right). The number of winds 
assimilated is only 80602 for this 6 hour assimilation cycle, just 2% of the 460641 winds received.     
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The current strategy is clearly very wasteful.  There is also evidence to suggest that, although most of 
the poor quality winds are removed, some are assimilated, in some cases leading to detrimental 
impact on forecast quality (e.g. Forsythe & Saunders 2006).   
 
How can we improve our approach?  Aside from tweaking the existing set-up by modifying the spatial 
blacklisting, quality indicator thresholds and background check criteria, three areas that may be 
particularly important to consider are the observation errors, the observation operator and whether 
there is a better way to handle the spatially and temporally correlated errors.  In this paper we focus 
on the observation errors. 

 
A NEW APPROACH TO SETTING AMV ERRORS 
 
Two options 
There are two main approaches to estimating errors in the AMV data.  The first is a statistical 
approach where factors that may affect the errors, e.g. wind speed, are identified and used as 
predictors.  This is the basis of the current formulation of the Expected Error (EE), initially designed at 
the Bureau of Meteorology (Le Marshall et al., 2004).  Linear regression against AMV-radiosonde 
differences is used to create regression coefficients, which are then used to estimate the AMV errors.  
The main advantage of this approach is that it is easy to implement.  The EE shows a good 
relationship with O-B statistics (e.g. Berger et al., 2006) and has been used at the Bureau of 
Meteorology for thresholding and thinning selection.  The second approach is physically-based and 
involves identifying and quantifying the error sources in the AMV data.  Statistics may still be useful, 
for example in understanding the relative contribution of the different error sources, but the important 
difference is that the approach ties back to a physical understanding of the errors in the AMV data.    It 
is a tougher proposition, but ultimately should lead to better results and is our preferred approach.  
Additionally because it encourages a better understanding of the limitations of the derivation, it may 
highlight areas of the AMV derivation which could be improved.   
 
The proposed approach 
The first step in designing physical estimates of the AMV errors is to distinguish two parts, one linked 
to an error in vector derivation and one to an error in height assignment.  The latter is more 
problematic in regions of large vertical wind shear, but will not matter where there is little variation in u 
and v with height. Some sources of error in the AMV vector and height are listed in Forsythe & 
Doutriaux-Boucher (2005).    
 
One idea for developing estimates of u and v errors is to use the correlation surface from the tracking 
step.  Intuitively there are two things to look for: firstly, a high maximum correlation coefficient and 
secondly, a clear single maximum.  The tracking accuracy is less certain in cases where there are no 
locations in the search window with good correlation values or where the maximum in correlation is 
broad or there are multiple maxima.  Navigation error could also be incorporated in the final estimate 
of u and v error.   
 
The height error estimate is likely to be harder to do well as there are a number of sources.  Ideally 
biases in the radiance data should be corrected prior to the height assignment step (e.g. Daniels et al., 
2004).  The remaining sources of height error include noise in the observed radiances, limitations of 
the height assignment techniques (e.g. emissivity and single cloud layer assumptions etc.), errors in 
the forecast model (used for temperature and moisture profiles), errors in the radiative transfer model 
and identification of the appropriate pixels in the target box to use for the height assignment.  Figure 2 
illustrates how the spread of cloudy radiances can be used to provide an estimate of height 
uncertainty (approach applied in the EUMETSAT MSG derivation scheme).  Minimum residual 
methods can also provide estimates of height uncertainty.  Investigations are required to assess how 
useful these measures are and whether they can be further developed over time to capture the main 
sources of error in the AMV heights.  
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Figure 2: Schematic cartoon to illustrate how the uncertainty in height can be estimated from the spread of 
observations.  The uncertainty is greater for thinner cloud (as shown on right).  
 
The proposed approach for estimating the total AMV observation error allows for both an error in the 
u/v vector components and an error in the u/v vector components due to a height assignment error.  If 
we assume the AMV vector and height errors are independent (reasonable assumption), the total 
AMV error can be calculated by combining the two parts as shown below.   
 
(Total u/v error)2 = (Error in u/v)2 + (Error in u/v due to error in height)2

 
The error in u/v due to the error in height (Evp) can be calculated using the model background wind 
profile and an estimate of the height error.  The formulation below assumes a Gaussian distribution of 
height error, which seems a reasonable assumption for much of the AMV data based on best-fit 
pressure statistics.  In cases where AMV data shows a marked height bias it may be better to consider 
blacklisting. 
 
Evp = √ ∑ Wi (vi - vn)2

            ------------------ 
                  ∑ Wi
 
 
where Wi = e                   * dPi

-((pi-pn)2/ 2Ep
2) 

  
i = model level 
vi = wind component on model level 
vn = wind component at observation location 
pi = pressure on model level 
pn = pressure at observation location 
Ep = error in height assignment 
dPi = layer thickness 
 
The error in vector due to the height error is calculated separately for the u and v components giving 
separate u and v component errors. 
 
With this approach, the same height error will yield a bigger observation error in regions of high 
vertical wind shear (see examples in Figure 3).  It therefore allows us to down-weight winds where a 
height error would be problematic and allows us to give greater weight to winds where the height 
assignment is less critical.   
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Figure 3: Examples of total u error for a case in a high shear region (350 hPa) and a case in a low shear region (680 
hPa) with varying height error inputs. 
 
The inputs required for this approach are estimates of the error in the height assignment and in the u 
and v wind components.   It is hoped that these will be provided routinely with the AMVs by the data 
producers using information available during the derivation.  As these are not yet available, we need to 
consider alternatives. 
 
Recent studies investigating the seasonal and geographic distribution of O-B statistics and 
comparisons of AMV pressure to model best-fit pressure have highlighted some general trends in the 
AMV errors (e.g. Forsythe & Saunders, 2008).  We may be able to use this enhanced knowledge to 
estimate suitable values for the u, v and height errors.  We know, for example, that the error in the 
height assignment is likely to be bigger at mid level than high and low level and is likely to be different 
dependent on the height assignment method (e.g. equivalent black-body temperature (EBBT) versus 
CO2 slicing). 
 
The current approach is to set the u and v errors using the model independent QI (see Figure 4). 
 

                                    
Figure 4: Plot showing relationship between the u/v error estimates used in the new Met Office observation error 
scheme and the model independent QI. 
 
The height error estimate is set using a look up table, dependent on satellite, channel, pressure level, 
surface type, height assignment method and latitude band. The values are based on the root mean 
square difference between the model best-fit pressure and AMV observed pressure. These have been 
calculated for a month of data at various times of the year.  An example of the height error estimates 
for Meteosat-9 IR 10.8 winds is shown in Figure 5. 
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Figure 5: Plot showing an example of the height error estimates as a function of pressure and height assignment 
method for the Meteosat-9 IR 10.8 winds. 

 
ASSESSING THE NEW SCHEME 
 
New errors versus old errors 
The distribution of old errors, defined in Table 1, and new errors are shown in Figure 6.  The new 
errors peak at lower values than the old errors and have a tail extending to higher values.  The long 
tail is due to AMVs in regions of high vertical wind shear being assigned large error estimates (e.g. 
example shown in Figure 3). 
 

                               
Figure 6: Distribution of the old (blue) and new errors (red and green for u and v components respectively) for 2 weeks 
of data after blacklisting is applied. 
 
Figure 7 compares the old (left) and new (centre) errors for the Meteosat-9 IR 10.8 winds for the 18 
UTC run on 24 February 2008.   
 

     

Figure 7: Plots showing the old (left) and new (middle) u component AMV observation errors for Meteosat-9 IR winds 
for the 18 UTC run on 24 February 2008.  Also shown is the absolute observation minus background u component 
(right) for that run. 
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The new errors are more variable in value, with the biggest values located in the jets, where the 

bservation errors and root mean square 
d 

        

        

vertical wind shear is largest.  Also shown is the absolute observation minus background u component 
difference (right), which can be used as a proxy for the error (also contains a contribution from error in 
the background).  We don’t expect a 1:1 relationship, but we would hope that most of the largest O-B 
differences correspond to AMVs with larger assigned errors.  The relationship looks promising and 
provides some confidence in the skill of the new approach. 
 
Relationship to O-B root mean square difference 
We expect to see a positive correlation between the o
difference values between the observation and background u and v components.  In an idealise
situation we might expect the points to lie on a straight line above the x=y line as the O-B root mean 
square difference contains a contribution from the background error.  However, we know that it is 
better to use inflated errors for the AMVs to compensate for spatially and temporally correlated errors 
so in reality it may be better for the points to lie in a line on or below the x=y line.  Figure 8 shows an 
example for 2 weeks of AMV data after blacklisting is applied.  The results are encouraging. 
  

  

 
 

Figure  s 8: Plots comparing the new u and v errors and the old errors to the observation-background root mean quare 

ct trial results 
ror scheme has been tested in two 4-week seasons in summer 2007 (24 May – 

ne of the main measures at the Met Office for assessing whether an impact trial has improved the 

ude 

vector difference for 2 weeks of data after blacklisting is applied. 

     
Impa
The new individual er
24 June) and winter 2007-8 (12 Dec – 12 Jan).  Both trials were tested at N216 50 levels with 4D-Var 
using near-operational data usage and code.   
 
O
forecast compared with the control run is the NWP index.  The global NWP index is produced from a 
weighted sum of the root mean square difference statistics for a range of forecast parameters 
(pressure at mean sea level, 500 hPa height, 850 hPa and 250 hPa wind fields) in different latit
bands and at different forecast ranges.  The averaged results for the two seasons verified against 
observations and analyses is +0.2, which indicates a small positive impact of the AMV error change.   
To put this in perspective the two recent AMV denial trials at the Met Office in Dec 2005 and Dec 2007 
have shown NWP index degradations of 1.5 and 0.6 respectively. 
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Figure 9 shows an example of the percentage forecast root mean square difference between the 
control and trial verified against observations for a range of forecast parameters (pressure at mean 
sea level, wind, geopotential height, temperature and relative humidity) at different levels and at 
different forecast range, separated by latitude band (north of 20N, 20N-20S, south of 20S).  Anything 
below the line indicates a positive impact from the trial.  Most benefit is seen at longer range, 
particularly in the northern hemisphere.  The results in the tropics and southern hemisphere are more 
mixed. 
 

 

SH NH TR 

 

Figure 9: Change in percentage root mean square difference between the new error trial and control trial in the summer 
season verified against observations for a range of forecast parameters at different forecast range, separated into NH 
(north of 20N), TR (20N-20S) and SH (south of 20S).  Anything below the line indicates a benefit from the experiment 
using new errors. 
 
Figure 10 shows the T+48 hour forecast error difference between control and trial averaged over the 
course of the summer trial (verifying each trial forecast against its own analysis).  The yellow-orange 
colours indicate degradation and the green-blue colours improvements.  The differences are small and 
spread.  There is a tendency for a slight degradation in the Indian Ocean. 
 

           
 

Figure 10: Difference in the 250 hPa wind field T+48 forecast error (each trial verified against its own analysis) for the 
new error and control trials for the summer season.   
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WHERE TO GO FROM HERE? 
The new AMV error scheme is recommended for inclusion in the next operational upgrade at the Met 
Office (due July 2008).  Further investigations are planned to compare the height error estimates to 
the latest model best-fit pressure statistics and to consider other improvements to the strategy.  A 
couple of areas which may be worth further consideration are the background check and the setting of 
u/v error estimates. The background check is affected by the change as the O-B threshold at which 
observations fail the check increases with the size of the observation error.  One consequence of the 
new scheme is that very few AMVs fail the check.   
 
Looking slightly further ahead we hope to be in a position to test u, v and pressure error estimates 
from the producers. As an example, at the moment all AMVs located at 200 hPa using the CO2 slicing 
height assignment are assigned a height error of 40 hPa (based on best-fit pressure statistics).  
Information from the derivation step may give an indication of when this is a reasonable and when the 
height error should be more or less.  Ultimately this should provide us with more realistic observation 
errors for use in NWP.  

 
CONCLUSIONS 
We have developed an approach to generate individual observation errors for each wind using 
information on the quality of the AMV vector and height assignment.  It takes advantage of an 
increasing understanding of the sources of error and accounts for the height assignment error being 
more of a problem where the vertical wind shear is bigger.  The new errors are more variable than the 
old errors and better reflect the O-B differences.  The impact trial results show a small improvement 
and the change is recommended for operations.  It is not trivial setting observation errors well, 
particularly as their success also depends on the appropriate setting of the background errors to 
ensure that the correct weighting is given to each.  It is hoped that the impact of the scheme can be 
further improved through refinement of the existing set-up and, in particular, provision of u, v and 
height errors from the producers. 
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