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Abstract

This paper presents recent and ongoing work in the area of tracer selection and tracking in water vapour
imagery, in the context of atmospheric motion vector (AMV) derivation. First, it investigates the contribu-
tion of different spatial frequencies to the tracking, using MSG-2 water vapour images and following an
approach based on Gaussian multi-scale representation; the main finding is that the higher frequencies
might have a negative impact on the tracking. It also describes results of a preliminary study concerning
tracer selection. Finally it introduces the H1 norm as a similarity function for the tracking step; H1 is
based on the familiar L2 norm, but, unlike L2, it includes terms for the spatial derivatives.

1 INTRODUCTION

An aspect of the derivation of atmospheric motion vectors (AMV) that has received considerable atten-
tion lately is tracer selection, and in particular, the impact of tracer size on AMV quality. On the one hand,
smaller tracers contain less information, and are more likely to produce low quality AMVs, especially for
large time intervals between consecutive images, as shown by Dew and Ackermann (2010). On the
other, larger tracers are more likely to contain features from different layers, and therefore to produce
winds that actually are averages of winds from different levels, as suggested by Sohn and Borde (2008).

Daniels and Bresky (2010) have proposed a nested tracking method to retain the advantages of both
large and small tracers, and have shown that their method diminishes the slow speed bias, a known
problem in AMV derivation, especially with the 10.8µm imagery. Several studies have investigated the
relation between optimal tracer size and time interval between images (Oyama, 2010; Cho and Ou,
2010).

Another aspect to consider is the detection of promising tracers: is it possible to characterize good
(or bad) tracers, i.e. is it possible to find a meaningful statistical relation between the local properties of
tracer boxes and the quality of the resulting AMVs? Not all tracers yield good AMVs, and suitable criteria
allowing an a priori selection of promising tracers may contribute to a better overall quality of the motion
field and to a better use of the available computing resources. In the IR 10.8µm imagery, often strong
gradients are sought, as they allow the detection of well defined cloud edges. However, the nature of
WV imagery is different (e.g. there are no sharp edges); operational derivation schemes (Holmlund,
2002; Velden et al, 1997) typically include a tracer selection step that preferably locates tracers in areas
of strong gradients in cold areas of the image.

This paper presents recent and ongoing research in the area of tracer selection and tracking in wa-
ter vapour imagery. Although the main thread of the work is tracer selection, it has lead to other areas,
such as spatial frequencies or similarity functions. The patchwork style perhaps reflects the deep con-
nection between the different aspects of the problem of AMV derivation.

The structure of this paper is as follows. Section 2 briefly introduces the basic framework used through-
out the paper, Gaussian multi-scale representation. Section 3 studies the contribution of different fre-
quencies to the tracking, for a number of tracer sizes. Section 4 presents results of preliminary data
analysis regarding the relation between local properties of tracers and the quality of the motion field.
Section 5 introduces a new similarity function, based on the H1 norm, and section 6 concludes the
paper.
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2 GAUSSIAN MULTI-SCALE REPRESENTATION

Gaussian multi-scale representation (Lindeberg, 1994) is a very successful approach in computer vision.
An image I(x , y ) is embedded in a family of convolutions with the 2-dimensional Gaussian kernel G:

L( . , . ;σ) = G( . , . ;σ) ∗ I( . , . ) (σ ∈ R+) (1)

where
G(x , y ,σ) =

1
2πσ2 e−

x2+y2

2σ2 (x , y ∈ R) (2)

Each L(x , y ;σ) can be seen as a smoothed version of the original image I(x , y ), and the original image
I is the member of the family for σ = 0. In equation (1), semicolon has been used as separator to stress
the different roles of σ and the spatial variables.

The Gaussian function is a regularizing kernel with many good properties, extensively discussed in
the literature by e.g. Lindeberg (1994), Florack et al. (1992), Marr and Hildreth (1980) and Stein and
Shakarchi (2003). In particular, it provides an optimal compromise between space localization and fre-
quency localization (Marr and Hildreth, 1980), and convolution with a Gaussian kernel does not introduce
spurious structures (Lindeberg, 1994).

The properties of the Gaussian kernel make Gaussian multi-scale representation a sound and efficient
framework to analyze images. It can be used to study the contribution of different frequencies, and it
also provides a natural and efficient way of calculating derivatives in a generalized sense. Note that it
does not really make sense to talk about the partial derivatives of I in the traditional sense, as it might not
even be continuous. But when I is seen as embedded in a family of convolutions with the 2-D Gaussian
kernel, as described in equation (1), it is possible to consider the partial derivatives, in a generalized
sense:

Dx I( . , . ;σ) =
∂G
∂x

( . , . ;σ) ∗ I( . , . ) (3)

and
Dy I( . , . ;σ) =

∂G
∂y

( . , . ;σ) ∗ I( . , . ) (4)

A simple calculation gives:

∂G
∂x

(x , y ,σ) = − x
σ2 G(x , y ,σ) and

∂G
∂y

(x , y ,σ) = − y
σ2 G(x , y ,σ) (5)

which allows the efficient computation of Dx I( . , . ;σ) and Dy I( . , . ;σ). Note that the derivatives of I are
necessarily linked to a particular value of σ, i.e. to a scale, and that derivatives for σ = 0 (i.e. the original
image) are not defined.

3 SPATIAL FREQUENCIES

This section studies the contributions of different spatial frequencies to the tracking, using the frame-
work introduced in the previous section. The initial motivation for this study was the need of background
knowledge about the effect of Gaussian smoothing on the tracking. As mentioned earlier, tracer selec-
tion is the main thread of this work, and the scale at which properties are observed is an important issue.
For this reason, knowledge about the role of scale on the tracking was considered necessary. The study
focussed on image analysis aspects.

Each Gaussian blur L(x , y ,σ), result of the convolution of the original image I(x , y ) with the 2-dimensional
Gaussian kernel, as described in equation (1), is essentially a smoothed version of the original image
from which the higher spatial frequencies have been removed, i.e. a Gaussian blur is a low-pass filter.
Similarly, the difference between two Gaussian blurs
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D(x , y ;σ1,σ2) = L(x , y ;σ1)− L(x , y ;σ2) (6)

can be seen as the result of removing the higher and lower frequencies from the original image I(x , y ),
i.e. it is a band-pass filter.

The data used in the experiments were brightness temperatures from the MSG-2 water vapour 6.2µm
channel, with a time interval of 15 minutes between consecutive images. The area (south-western Eu-
rope and North Africa) is shown in figure 1 with the help of an IR 10.8µm image. The date and time
of the images is 17 July 2007, between 10 and 11 UTC. Concerning the tracking, the similarity func-
tion used was Euclidean distance, and a search area of 30 pixels around tracer boxes was used. The
backtracking test was used to evaluate the resulting motion vectors. Note that height assignment is not
attempted.

Figure 1: IR image showing the area used in the test.

The backtracking test is essentially an inverse consistency test. Assume that we select a tracer box
B1 in an image I1 and calculate its best match B2 in the next image I2, according to a particular method,
yielding a vector v. If the method is good for successfully calculating the apparent motion from I1 to I2
in the neighbourhood represented by B1, it will also be good to estimate the apparent motion from I2
to I1 in a neighbourhood of B2, and the new vector will be −v. Let B1a be the best match for B2 in I1.
The distance between B1 and B1a can be used to classify the motion vectors (MV): an MV is assigned
to class F0 if B1a is identical to B1, to class F1 if B1a is not identical to B1 but it is one pixel apart in
x and/or y directions, and to class F9 otherwise. An MV is labelled as ”good” if it is either in F0 or in
F1. The backtracking test is a simple consistency test, and a good method to derive MVs should yield
a high percentage of ”good” vectors. However, the evidence this test gives is limited, and for a thorough
assessment it should be complemented with other evaluation methods, such as comparison with NWP
wind fields or radiosonde observations.

To generate the sample, a selection grid with 8 pixels between grid points in both directions was used.
The tracer sizes considered were 20 ∗ 20, 24 ∗ 24, 28 ∗ 28, 32 ∗ 32 and 36 ∗ 36. Table 1 shows the
number of tracers in each sample. Note that this number varies with tracer size; the reason is that for
larger sizes less tracers can be selected, for this sampling process. Before starting with the experiments
on frequencies, we run the experiment on the original images, in order to get a reference. Figure 2
shows the results; the y -axis represents the percentage of tracers in each of the groups F0, F1 and F9.
Displacements v = 0 (less than 10%) have not been included, as they are not considered meaningful.

Tracer size (pixels) 20*20 24*24 28*28 32*32 36*36
Number of tracers 3552 3436 3402 3283 3274

Table 1: Number of tracers in the sample for each tracer size.
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Figure 2: percentage of tracers in each group, for each tracer size.

The purpose of the first experiment with frequencies was to investigate the contribution of higher frequen-
cies to the tracking, by using smoothed images, as described in equation (1), instead of the originals,
for a number of values of σ. The results are shown in figure 3. The y -axis represents the percentage of
tracers in either F0 or F1. Each line in the plot is associated to a tracer size. A consistent improvement,
as tracer size increases, can be seen for every value of σ tested, as one would expect, and in agreement
with the results shown earlier in figure 2. Note that the values for σ = 0 are the same as those in figure
2, as both correspond to the original images.
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Figure 3: relation between percentage of good vectors and σ for several tracer sizes.

More surprising is the shape of the lines relating the percentage of good MVs to σ. In all cases, this
percentage increases sharply from σ = 0 (i.e. the original set) to σ = 1, peaks in the interval [1, 2] and
then decreases. This pattern is consistently observed for all the tracer sizes tested, and suggests that
the higher spatial frequencies actually have a negative impact on the tracking. It is not clear whether this
might happen because higher frequencies contain higher levels of noise, or because they are associ-
ated to small-scale non-advective atmospheric disturbances. Further research could study their relative
contributions.
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In the second experiment with frequencies, differences between Gaussian blurs, as described in equa-
tion (6), were used. The differences between Gaussian blurs are band-pass filters, and the values of
σ1 and σ2 determine the range of frequencies retained. By keeping constant σ1 and varying σ2 it is
possible to study the contribution of lower frequencies to the tracking. Figure 4 shows the results of this
experiment. Each panel contains two lines, one for σ1 = 0 (i.e. original images, without smoothing),
and another for σ1 = 1. The six curves show an improvement as σ2 increases, suggesting that lower
frequencies have a positive impact for the range considered; however, this improvement soon becomes
marginal. Results for σ1 = 1 are consistently better than for σ1 = 0, in agreement with the results shown
earlier in figure 3.
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Figure 4: See text.

4 TRACER PROPERTIES

This section briefly describes the results of a preliminary study carried out with the aim of exploring
the relationship between the local properties of tracers and the quality of the MVs produced. Two main
issues arise when approaching this problem: 1) what tracer properties should be analyzed, and 2) at
what scale.

With the setup described in section 3, histograms and scatter plots were generated for a number of
values of σ, between 0 and 6. Several variables that reflect local variation (standard deviation, contrast,
gradient) were analysed, and local maximum and minimum brightness temperatures were also included.
The image sequence corresponding to σ = 1 was used for tracking, as this was the value that consis-
tently produced the best results for all tracer sizes in the experiment described in the previous section.

Figure 5 shows two such histograms, both for σ = 1. Each green, yellow and red bar shows the per-
centage of tracers labelled as F0, F1 and F9, respectively, in that particular bin. The grey bar shows
the number of tracers in the bin. If we concentrate on the region where the number of vectors is sig-
nificant, the proportion of good vectors shows a slight improvement with stronger gradients, perhaps
more noticeable for the 24 ∗ 24 tracers. On the whole, figures for other values of σ, other tracer sizes



Tenth International Winds Workshop, Tokyo, Japan, 22-26 February 2010 6

and other variables such as local standard deviation or local contrast showed similar results. However,
scatter plots for minimum BT and maximum BT for large values of σ showed a strong signal (see figure
6), locating ”bad” tracers preferably in a well defined small area. Further exploration showed a clear
concentration of F9 tracers on a specific area of the satellite image (not shown) suggesting that the
quality of the MV field was linked to large-scale atmospheric flow characteristics more strongly than to
local characteristics of the image.
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Figure 5: Histograms showing the distribution of F0, F1 and F9 tracers.

5 THE H1 NORM AS SIMILARITY FUNCTION

This section introduces the norm H1 as a similarity function for the tracking step. Sobolev spaces are
sometimes used to model images (Chan and Shen, 2005) and in particular the Sobolev space H1 is
often used in image processing. The H1 norm takes into account not only the values of the function that
defines the image (such as brightness temperature or radiances) but also its partial derivatives. The
motivation to explore this norm is its potential to extract information from tracers, thanks to the terms in-
cluding derivatives, which might have a positive impact on the quality of MVs, and perhaps allow smaller
tracers to be used.

Euclidean distance is often used to measure the similarity of two images. If I is an image, the Euclidean
norm

‖I‖2 = {
jn∑

j=j1

in∑
i=i1

I(i , j)2 } 1
2 (7)
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Figure 6: See text in section 4

can be seen as the discretization of the L2 norm:

‖I‖2 = {
∫

Ω

|I(x)|2 dx)} 1
2 (8)

The Sobolev space H1(Ω) is a function space related with L2(Ω). Unlike the L2 norm, the H1 norm
includes terms for the partial derivatives ∂I/∂x and ∂I/∂y :

‖I‖H1 = {‖I‖2
2 + ‖ ∂I

∂x
‖2

2 + ‖ ∂I
∂y
‖2

2}
1
2 (9)

In practice, discretization leads to the expression:

‖I‖H1 = {
jn∑

j=j1

in∑
i=i1

I(i , j)2 +
jn∑

j=j1

in∑
i=i1

Dx I(i , j)2 +
jn∑

j=j1

in∑
i=i1

Dy I(i , j)2 } 1
2 (10)

As mentioned in section 2, it does not make sense to talk about derivatives of I in the traditional sense.
However, when I is seen as embedded in a family of Gaussian blurs, the partial derivatives are under-
stood in a generalized sense, and there is a natural and efficient way of calculating the derivatives of I
as convolutions of the original image with the derivatives of the Gaussian filter, as described in section 2.

It is also possible to consider an alternative similarity function where different weights are given to the
terms in equation (10). First exploratory tests (not shown) suggest that this may be a useful approach.
However, it is computationally very costly, which could be a serious drawback.

6 CONCLUSION

This paper has presented recent and ongoing research related to tracer selection and tracking in water
vapour imagery, in the context of AMV derivation. It has described a study on the contribution of differ-
ent spatial frequencies to the tracking, for a range of tracer sizes. The main finding is that the higher
frequencies might actually have a negative impact on the tracking; this is a consistent result for all the
tracer sizes considered. The contribution of lower frequencies seems to be positive or neutral.

This study should be extended to larger areas and periods, using evaluation methods such as compar-
ison with NWP short-range forecasts and with radiosonde observations. Plans for future work include
these extensions. Similar experiments could be carried out with images from other SEVIRI spectral
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bands or other satellites, and further research could help understand the reasons for the observed neg-
ative impact of the higher frequencies.

The exploratory data analysis regarding the relationship between local properties of the image and
the quality of the resulting MVs suggests that there might be a stronger relationship between the overall
quality and the large-scale characteristics of the atmospheric flow than with the local properties of the
image. However, the study is in early stages.

The paper has also presented the background and motivation for exploring the H1 norm as a similarity
function in tracking. Plans for the future include experimentation with H1.
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