Applications of High-Resolution Wind Estimates in Storms from 1-Minute GOES-16 Imagery Using an Optical Flow Technique.

Bob Rabin^{1,2}

¹NOAA/National Severe Storms Lab Norman, Oklahoma

Chris Velden², Dave Stettner², Steve Wanzong²

²Cooperative Institute For Meteorological Satellite Studies University of Wisconsin-Madison

15th International IWWG Workshop

13 April 2021

Dense Optical Flow: What is it?

Dense optical flow compares two images to estimate the apparent motion of each pixel in the one of the images.

Colorized optical flow. Color is direction and intensity is magnitude.

High Accuracy Optical Flow Estimation Based on a Theory for Warping

T. Brox, A. Bruhn, Nils Papenberg, J. Weickert Saarland University , Saarbrucken, Germany

Proc. 8th European Conference on Computer Vision, Prague CR, 2004

-Variational Model

-Assumptions:

Grey value constancy Gradient constancy Smoothness -Multiscale approach (allows for large displacements)

-Small angular errors

-Insensitive to parameter variations

-Excellent robustness under noise

-Computationally Efficient

Hurricane Irma

"Super enhanced" IR (ABI band 13): 06 Sep 17: 1501-1515 UTC

GOES16 2-kr	n IR: 6 SEP 17 15	01:24UT0					2	_
							2	2 —
							2	1
	-10-							
							2	0 —
15	1911 12							
			×				1	3
-		9 8	<u></u>				.1	8 8
	0	N ²	×				1	
		• • 5						5
Link to full animation with winds								
65 6		2 E		0 5	9 5	8 5	7 5	4 — 6
	COE8-		· c eee 17		TMEE			

Hurricane Laura Super enhanced" IR (ABI band 13): 26 Aug 20: 19:04 UTC

Combined Optical Flow and AMV

Hurricane Teddy 18 Sep 20 09:00 UTC

AMV only

AMV + Optical Flow

Hurricane Teddy: 18 Sep20 00:00-23:45 UTC

NOR'EASTER: 01 February 21, 2034-2046 UTC

NOR'EASTER: 02 February 21, 0102-0114 UTC

Lawrence, KS 28 May 2019

Tornadoes

Tornado - Douglas/Leavenworth County

Douglas and Leavenworth Counties

Date	28 May 2019		
Time (Local)	06:05 PM CDT		
EF Rating	EF - 4		
Est. Peak Winds	170 MPH		
Path Length	31.82 Miles		
Max Width	1 mile		
Injuries/Deaths	18 injuries; 0 fatalities		

Summary:

The tornado developed in southwestern Douglas county Kansas and tracked to the east-northeast while strengthening. EF-3 damage occurred in northeastern Douglas county, then the storm gained strength and produced EF-4 damage in southern Leavenworth county Kansas.

EF-4 damage to a home near Linwood, KS (NWS Survey).

EF-3 damage to a home near Linwood, KS (NWS Survey).

Middle Tennessee storms

Super Enhanced Infrared Imagery: GOES-16 Band 13: 03 March 2020 06:07 UTC

Super Enhanced Infrared Imagery: GOES-16 Band 13: 03 March 2020 06:16 UTC

GOES-16 derived wind speed: 03 March 2020 06:07 UTC

ប្រវែះ ម្នាយនៃ ម្នាយនៃ មួយនៃ ម្នាយនៃ ម្នាយិកម្ម ហើកម្ម ហើកម្មប្រវែះ មួយនេះ មួយនេះ មួយនេះ a white white white white white white a Walthan Wang Wang Waltha Waltha Waltha Marina Marina Walin Walin Walin Walin Walin Walin Walin Walin Walin Wali _____N___N___N___N___N___N_ ինել այրել այրել այրել այս երկ A THE REPART OF THE PARTY PARTY PARTY AND A DEPARTMENT OF THE PARTY AND A DEPARTY AND A D an a submining and a submining a submining and a submining a submining a submining and a submining a submining a Land Carley Barthe In the Les Bartan Barta <mark>Նա Հայ հնականականական անդական անդական հայտական անդական հայտ</mark> <mark>يەت بەت بەت بەت بەت بەت يەت يەت بەت ب</mark>ە and a second s N. R. La La . La . La . La La La La La La ومروم ومروم مرافع المراجب A A MA MA MA MA MA

40

20

0

60 80 m/s

GOES-16 derived wind speed: 03 March 2020 06:16 UTC

ana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fisiana amin'ny fis and a second ى _{ئىل}ى بىرى بىرىنى ئۇرىكى بىرىكى بىر <u>ເພີ່ມຈະການ ແລະ ໄດ້ ເປັນ ເປັນ ເປັນ ເປັນ ແລະ ແລະ ແລະ ແລະ ແລະ ແລະ ເປັນ ແລະ ເປັນ ເປັນ ເປັນ ເປັນ ເປັນ ເປັນ ແລະ ເປັນ</u> L. L. Magnalina in a magnalina in a magnalizza de la concerna de la concerna de la las de las des des las las m A Margar Margana - ----<u> and a second second</u> and a second state where where the second state stat a with the same We he in the second of the second states of the second states of the second second second second second second The second se and a second and the state of the second 10. 10. **44. Ku**na, 15.

0	20	40	60	80 m/s

Maximum wind speed vs Minimum cloud top temperature

Maximum wind speed vs Low-level rotation

Time UTC

Summary

Possible Applications:

- Optical Flow technique takes advantage of GOES-R 1-minute image interval in mesosectors
- Uses "Super image enhancement (IR 0.1 deg C)
- High density of cloud track winds (2 km for IR)
- Monitor intensity of thunderstorm updrafts
- Additional aid for situational awareness

Uncertainties:

-Uncertainty in cloud top heights (resolution differences with IR)

-Validation needed

Thank you!

T'áá íiyisíí ahéhee' (Diné Bizaad) Quyanaqpak! (Inupiaq) Miigwech (Ojibwe)

Link to archived and real-time imagery:

https://www.ssec.wisc.edu/~rabin/winds/goes16/cases/

Dr. Bob Rabin NOAA/National Severe Storms Lab Norman, OK

bob.rabin@noaa.gov +1.405.325.6336