The MISR NRT CMV product: MISR cloud motion vectors within 3 hour latency Kevin Mueller¹, Steve Protack², Nancy Baker³, Brian Rheingans¹, Veljko Jovanovic¹, Sebastian Val¹ ¹Jet Propulsion Laboratory, California Institute of Technology ² SSAI NASA Langley Resarch Center ³ Naval Research Laboratory, Monterey June. 17, 2014 ## Multi-Angle Imaging SpectroRadiometer (MISR) Wind Products #### **MISR** instrument - Mission Lifetime - · 1999 -> 2018+ - Swath Width ~ 380 km - 9 Camera View Angles - 0º (Nadir) - ±26.1°, ± 45.6° - ±60.0°, ± 70.5° - 7 minute overpass - B, G, R, & NIR Bands - Spatial Resolution - 275 m for Nadir and Red Band - 1100 m all else #### **MISR Wind Products** - Height-resolved Cloud Motion Vectors (CMV) - Geometric height obtained from parallax - Retrieved from redundant forward and aft camera triplets - Time interval Δt = 200 seconds - Gridded resolution $\Delta x = 17.6 \text{ km}$ - Height-resolved cross-track cloud motions: - Geometric height obtained from parallax - Retrieved from redundant forward and aft camera pairs - Time interval Δt = 46 seconds - Gridded resolution $\Delta x = 1.1 \text{ km}$ ### **Example MISR Wind Product Retrievals** Height resolved cross-track cloud motion (1.1 km resolution) (Hurricane Ida) Height resolved cloud motion vectors (17.6 km resolution) (Hurricane Francis) ### Revisiting IWW-11 NWP WG Recommendations | Recommendation | Progress | |--|--| | "NWP centres to evaluate MISR winds in offline assimilation tests" | Naval Research Lab (NRL) obtained significant positive forecast impact with study continuing. Study led by N. Baker Japan Meteorological Agency (JMA) obtained mixed, but overall positive forecast impact. Study led by K. Yamashita German Weather Service (DWD) obtained mixed, but mostly positive forecast impact. Study led by A. Cress. JPL study under way with support from NASA Global Modeling and Assimilation Office (GMAO) using GEOS-5 DAS | | "JPL to provide MISR winds with improved latency (~5hr)" | Near Real Time (NRT) MISR wind product to enter production by August 2014 Currently in final end-to-end testing at NASA Langley Research Center MISR NRT wind product to have well under 3 hour latency | | "Agencies to provide data in BUFR format" | MISR NRT wind product will be offered in BUFR and HDF-EOS4 format | ### NRL obtains good overall forecast impact - NRL conclusion: Good overall impact from MISR winds - Low level MISR winds appear to fill data gap - details in poster... ### NRL expecting improved impact with fine-tuning - NRL opportunities to improve MISR impact - Revisit quality control and assimilation procedures - Make use of MISR QI along with observation - Find optimum observation density - Screen per retrieval and per orbit to identify MISR orbits with suspect georegistration # MISR horizontal coverage is pole-to-pole, potentially filling observational data gaps ## MISR has potential niche in excellent boundary layer sampling - Quantity of MISR CMV at low level comparable to quantity currently assimilated by GEOS-5 DAS - MISR produces winds in GOES view where winds from GOES ought to have been assimilated but were not - Above: Atmospheric Motion Vectors assimilated in GEOS-5 DAS at 00Z, August 20, 2010 - *Green*: polar orbiting instruments - Red: geostationary instruments - Below: MISR Cloud Motion Vectors available that day Upcoming NRT MISR CMV leverages existing heritage #### **NRT MISR CMV** - Planned release by August 2014 - In end-to-end testing at Langley Research Center - NRT MISR CMV functionally equivalent to CMV produced in standard production - Std. Deviation between them is σ =0.5 ms⁻¹ cross-track wind, 2.3 ms⁻¹ along-track wind, 235 m height - Same algorithms; minor differences in upstream L1 workflow - Takes advantage of well understood heritage - Horvath, 2013; Mueller et al., 2013; Lonitz & Horvath, 2011; Hinkelman et al., 2009; ... Horvath & Davies, 2001 - Latency: 90% data in 2.5 h - Available in BUFR and HDF-EOS4 format ### MISR software pipeline at LaRC to produce CMV products #### 90% of MISR NRT CMV data within 2.5 h Figure below shows lag between observation and product availability #### Summary of Status Update - The MISR NRT Winds product will be in production by August 2014 - Will be functionally equivalent to monthly MISR CMV product - 90 % of MISR CMV data offered within 2.5 hours - Accuracy will be roughly comparable to MISR CMV product - NRL has obtained positive forecast impact from MISR winds - Studies continue - Thought to be benefitting from MISR low level winds - Additional investigations under way - NRL, DWD, JMA, JPL are investigating MISR winds ## What further steps might the MISR team take to move forward? - Complete production of NRT MISR winds - Push NRT MISR winds via GTS distribution - Assess possible weak QI correlation with true wind quality? # Low level MISR winds have more dense and consistent coverage than coincident GOES IR - MISR winds coverage relative to GOES IR observations captured within MISR swath at same time and projected into same coordinate grid (2003-2008) - Below 3 km, MISR coverage 4-fold that of GOES - MISR has stronger tendency to track low level clouds - MISR may be losing sampling of high speed winds, indicated by a weaker mean jet ### Daily pole-to-pole MISR winds coverage #### MISR Cloud Motion Vectors (CMV) characteristics - Capture rapidly evolving scenes (eye of hurricane) - Capture subtle small scale changes in cloud heights - Handles multi-layer scenes #### Objective - Assess how WindQA diagnostics have performed throughout mission - Relevant to ongoing assessment of NRT diagnostics - Provide context for 2013 increased frequency of LO flagged orbits #### Technical Details - Block range limited to 41-140 to lessen seasonal effects - Raw - Orbits that do not have L1 "QA" flag set - Retrievals with comparable forward and aft values - Height of wind difference < 2500 m - Wind vector difference < 15 m/s - Final - · Orbits that do not have L2 "QA Winds" flag set - Retrievals with QualityIndicator > 50 - Time series statistics show monthly mean and monthly standard deviation of per orbit mean forward-aft differences - Per SOM path statistics show per path mission (2001-2013) mean and standard deviation of per orbit mean forward-aft differences - At first I limited the analysis to low clouds only, but including all wind heights did not appear to affect statistics #### Results - Global georegistration precision appears to maintain "final" forward-aft variance < 2 m/s and 200 m - Per path georegistration precision appears to maintain "final" forward-aft variance < 3 m/s - Particular paths with worse precision than 3 m/s - Off United States west coast - Over Panama Canal - Over Tibet - Loss of LO sampling in 2013 - More significant LO flagging than any time after 2004 - Not coincident with any apparent loss of quality in raw or final winds (need to look at sampling, though) - Shift in steady state of forward-aft height differences - Steady state height difference 2002-2008 is 0 m - Steady state height difference 2009-2013 is -100 m - Shift is also somewhat apparent in forward-aft along-track differences - The change coincides with an incident at end of 2008 causing spike in flagging of orbits by L2 #### Future work - Better assessment of sampling removed by forward-aft checks. - Identify specific problematic SOM paths, and characterize as simple text data enabling users to handle per-path quality variability (in e.g. assimilation schemes) - Put this information into TC_CLOUD Quality Statement ### This slide is a placeholder for results I don't Monthly georegistration diagnostics, tabulated per orbit