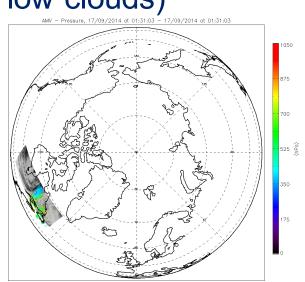
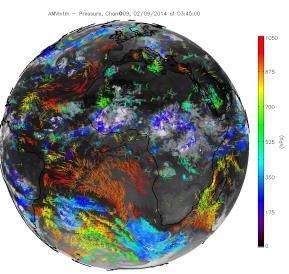


Olivier Hautecoeur Patrick Heas Regis Borde





AMV derivation method

- Classical method
 - Cloud tracking between successive images
 - Feature tracking algorithm (local images correlation)
 - Extracted from geostationary and low earth orbiting satellite data
 - Using thermal infrared channel and high resolution visible channel (daytime for low clouds)
 - AMV is:
 - Wind speed
 - Wind direction
 - Altitude (pressure)
 - Quality Index

Current AMV limitations

- Not everywhere
 - Cloudy situation

- Winds extraction at a single level
- Height assignment is known to be a recurrent problem
 - Vertical extension of the clouds
 - The accuracy on HA methods
 - Some dependencies on forecast models
 - Is the cloud a passive tracer?
- Recurrent AMV problems in tropics area
 - Fast speed biases where important mesoscale phenomena impact the medium range forecast.

So let's track fields!

- From two WV channels... to a dozen of levels of physical parameters
- Infrared sounders give access to vertical profiles of geophysical parameters
 - Temperature, Humidity, Gas concentration,...
 - ... or stack of parameters fields at different pressure levels
 - Therefore, height assignment is straightforward
- Candidate missions (for Eumetsat):
 - IASI/Metop
 - IRS/MTG, IASI-NG/EPS-SG

Method in test

Concept already in test

- Tests done in US at CIMSS
 - Recent product development base on AIRS data.
- Fellow at Met Office, L. Stewart,
 - Study done using simulated spectra generated by UKV 1.5km model.
- External study done by DLR for EUMETSAT in 2006
 - Humidity fields mimicked from Lokall-Modell LM from DWD

Limitations

- Cross correlation tracking methods not very efficient considering smooth temperature/humidity fields.
 - Not enough contrast/entropy for good matching.
- Each layer is considered separately.
 - Vertical consistency of the different wind fields
- Really difficult to deal with convection.

3D winds algorithm development at Eumetsat

- Use of a "global" model
 - Based on a Optical Flow model developed at Inria
 - Optical Flow = Interpolator between two images
 - Study 10 years ago (Heas and Memin, 2007) on motion estimation from successive MSG cloud products
 - Collaboration restored with Inria in 2015
 - Derivation of all pressure levels in one pass
 - Physical regularization introduced
 - Vertical motion is also considered
 - u, v, w retrieved at each level
- "Operational model"
 - Can run in real-time with reasonable computing resources
 - Based on modern mathematics

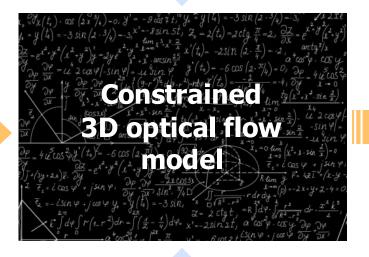
The concept

At Time t

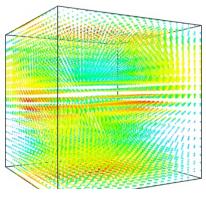
WV mixing ratio

Temperature

At Time $t + \Delta t$



WV mixing ratio



Temperature

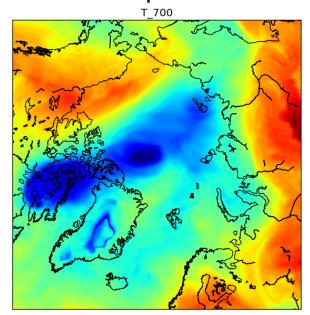
Basic Conservation Laws Vorticity and Divergence Regularization **Minimization algorithm**

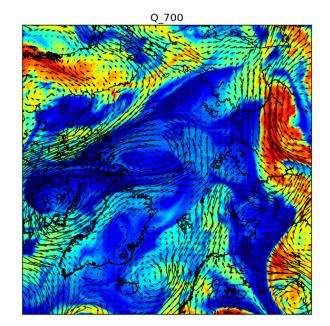
3D wind field

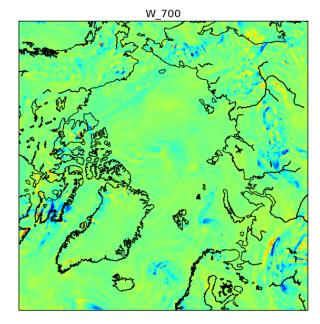
U,V,W fields derived from observations

Workplan

- Proof of concept
 - Adapt the old code to run on multiple levels
 - Tune the regularization settings
 - Test the AMV derivation on forecast fields
 - Based on ECMWF forecast temperature and humidity fields
 - Test the AMV derivation on IASI fields
 - Based on operational IASI level 2 products
- Specification of the new model
 - Coding and implementation

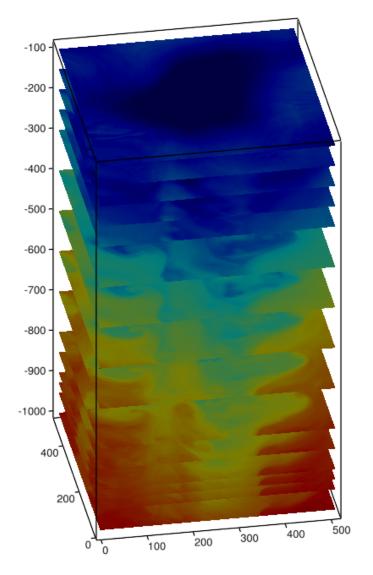


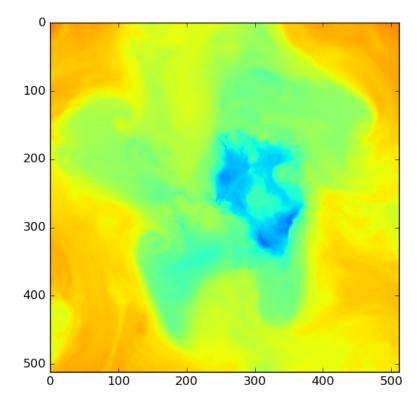

Test on model forecast data



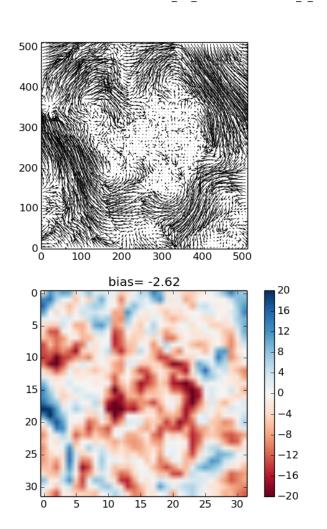
- Source
 - ECMWF operational data, 21 June 2013
 - Standard pressure levels
 - **Parameters**
 - T, Q
 - Wind fields (U, V, W)
 - Step = 1 hour

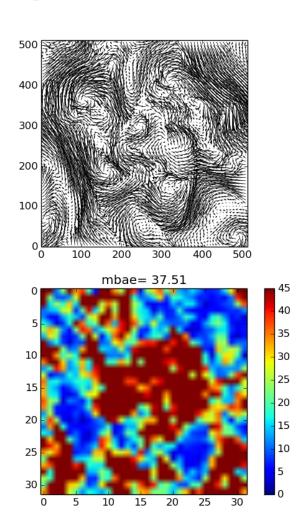
- Grid
 - Polar stereographic projection
 - Resolution = 20 km
 - (consistent with IASI sampling ~ 25 km)




Forecast temperature experiment

- Grid 512x512 pixels
- 12 levels
- 12:00 → 13:00


Wind derived at 700 hPa from forecast temperature

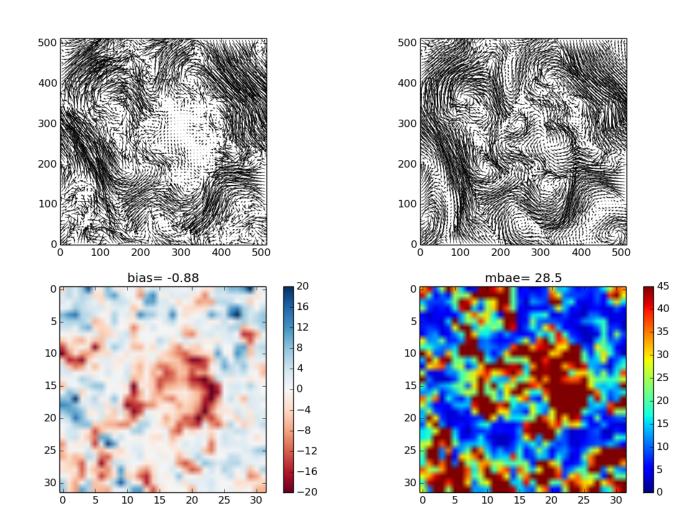


 $SH/FCT_SH_20130621120000Z_T_700_MASK.pgm_3DmotionH.motion\\vs\\SH/FCT_SH_20130621120000Z_T_700_MASK.pgm_3DinitMotionH.motion$

Derived from temperature fields

No guess!

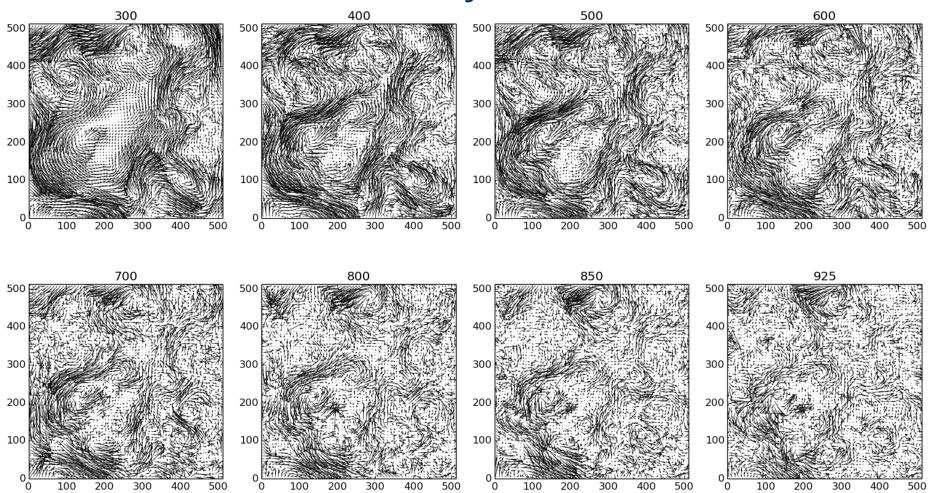
Forecast wind field at 12:00


Wind derived at 700 hPa from forecast humidity

 $\label{eq:shfct_sh_20130621120000Z_Q_700_MASK.pgm_3DmotionH.motion} \\ vs \\ \text{SH/FCT SH 20130621120000Z T 700 MASK.pgm 3DinitMotionH.motion} \\$

Derived from humidity fields

No guess!

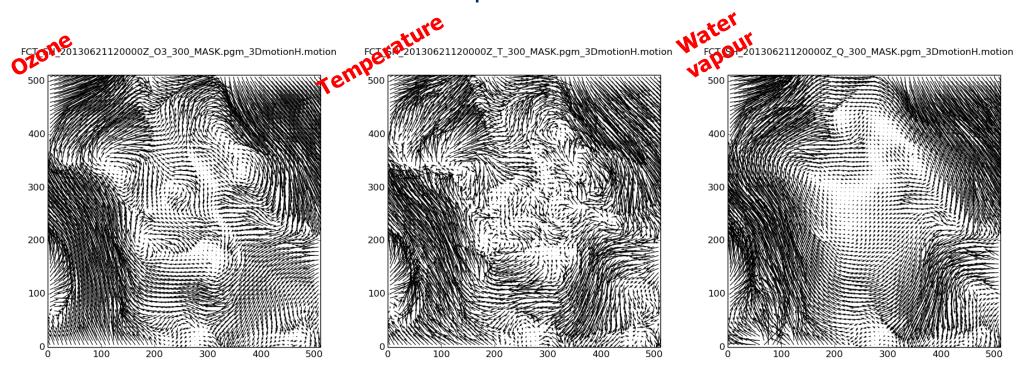


3D winds derived from humidity fields

Northern hemisphere, 21 June 2013, 12:00 → 13:00 UTC No guess

Statistics (O-B) 2013-06-21 NH 12h⇒13h

Pressure	Ozone		Temperature		Water vapor	
hPa	Bias	MBAE	Bias	MBAE	Bias	MBAE
100	-2.0	34	1.2	90		
150	-3.4	18	-4.2	65		
200	-5.4	17	-8.6	49		
250	-7.0	21	-9.8	35	-5.8	31
300	-6.8	22	-8.8	32	-6.0	24
400	-4.2	20	-5.3	31	-2.1	23
500			-3.4	38	-0.4	24
600		rion from each	-2.3	42	0.1	28
700	Winds derivation of the parameter, s	tion from each separately	-1.5	44	0.7	32
800	NO GUESS	USED	-0.8	46	0.6	37
850	NO GUESS		-0.5	46	0.6	38
925			-0.4	50	0.3	40
1000			1.2	54	1.6	52

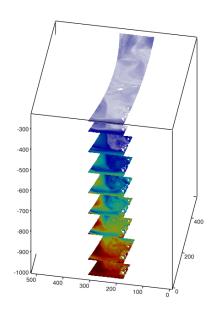


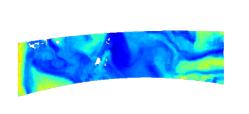
Need of concurrent inversion

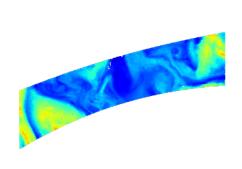
- No tracer is perfect to track winds at all levels
- Transition zone around 300 hPa
 - No more water vapor above over polar regions
 - Low concentration of ozone below, even more in the ozone hole
- Temperature and vertical consistency will allow to retrieve the winds even at that intermediate atmospheric levels

Very preliminary comments

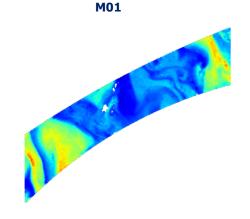
- Wind fields structure retrieved
- Inter-comparison with forecast fields are consistent
- Statistics (mean bias and MBAE) lower for highest levels
 - Temperature field smoother than water vapor content
 - But high atmosphere is dry
 - Ozone is another passive tracker
 - Half-life about one day for mid stratosphere, ten days for low atmosphere
- Q and O3 will be the two main variables tracked
 - With T for consistency.
- No guess means null speed wind
 - Gives negative bias speed for the highest level (highest wind speed)
 - Optical flow technique "doesn't" like big displacements.
 - Review the actual multi-scale initialization, adding "another step"
 - Introduce initialization in the spin-up (not starting from null speed)

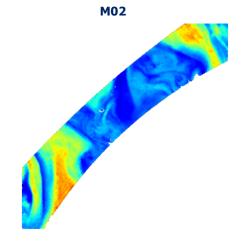



Test on IASI level 2 products



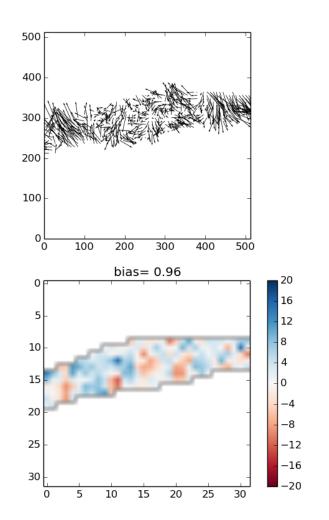
- Source:
 - **IASI_SND_02** products (operational production at Eumetsat)
- Platform:
 - Metop-A and Metop-B to maximize the overlap between the images
- Humidity (water vapor mixing ratio) fields at standard pressure levels
- Interpolated data on Polar stereographic grid

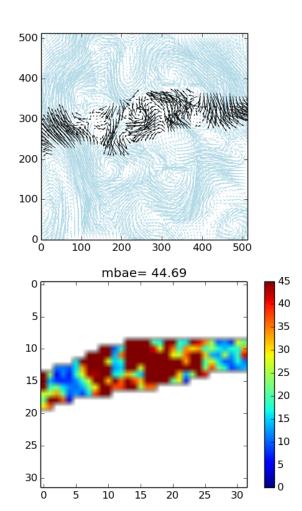

Humidity at 500 hPa for successive overpasses



M01

M₀2

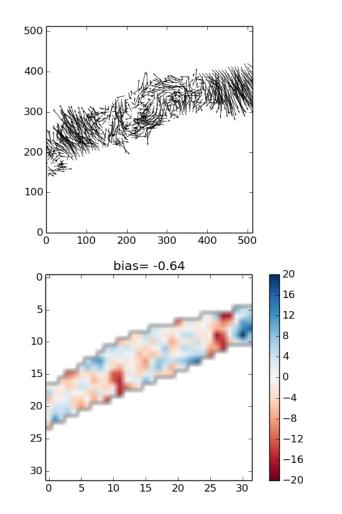


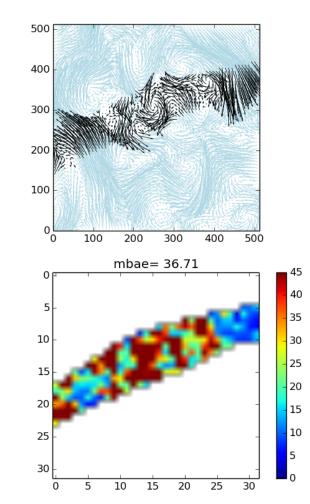


Wind derived from IASI humidity profiles

Derived from IASI humidity fields at 700 hPa

Forecast wind field at 04:00




Wind derived from IASI humidity profiles

 $\begin{tabular}{l} IASI_SND_02_M01_20130621035400Z_20130621053559Z_N_O_20150601101245Z_Q_0500_MASK.pgm_3DmotionH.motion \\ vs \\ .../data/FCT_SH_20130621040000Z_T_500_MASK.pgm_3DinitMotionH.motion \\ \end{tabular}$

Derived from IASI humidity fields at 500 hPa

Very preliminary comments

- Feasible but more difficult
- Requires stronger regularization
 - The physical regularization shall be tuned in the vertical profile
- Pixel quality index of IASI level 2 should be considered
- Coverage area should be extended to add constraints
 - The output data are therefore screened to reduce the border effect.
- The algorithm is suitable for operational use
 - Actual implementation is not parallelized but the winds derivation takes only 5 minutes to process about 25 minutes of data.

New model specifications

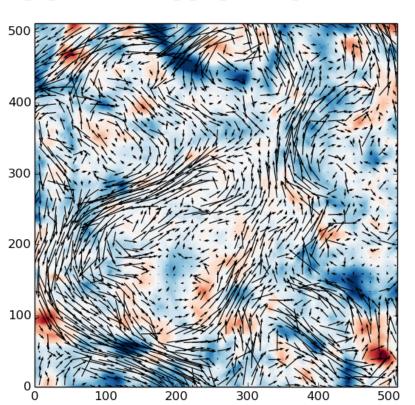
- Works on T, Q and O3 3D fields simultaneously
- Physical regularization
 - Link between the wind and the observed variables
 - Basic conservative laws
 - Thermodynamic energy equation

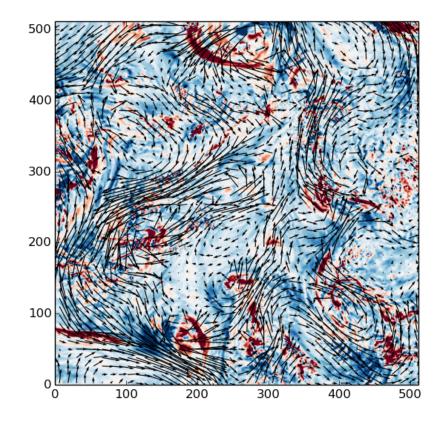
$$\frac{\partial T}{\partial t} + u \frac{\partial T}{\partial x} + v \frac{\partial T}{\partial y} - \omega S_p = \frac{J}{c_p}$$

- Self-similar regularization
 - Turbulence statistics preserved
 - Depending on the pressure level
- Initialization and spin-up process reviewed
- Same two steps in the main minimization loop
 - Alternating vertical and horizontal minimizations using efficient mathematical algorithm
 - Vertical consistency of wind profile derived
 - Allows sparsity events

Conclusion

- 3D winds retrieval using forecast products is possible
- 3D winds retrieval using IASI level 2 products is also possible based on the same technique
- Next:
 - Prototype
 - Implementation of the new model
 - Test on several months of data
 - Work on quality assessment and associated errors
 - Area with convection
 - Winds close to surface
 - Winds in low stratosphere (10 100 hPa)


Adding the true 3rd dimension



- 3D not only means (u,v) profiles
 - Vertical fluxes are also derived

FCT_NH_20130621120000Z_T_500_MASK.pgm_3DinitMotionH.motion

