

AMV Quality Control Method for the Next Generation Geostationary Satellite of Korea

Map

. AMV Error AMV)/FNL

norm. (FNL-

Jae Hwan Kim*, Hyungmin Park Department of Atmospheric Science, Pusan National University, Rep. of Korea jaekim@pusan.ac.kr

nformation

f the GK2A AMV Statu

Introduction

Atmospheric Motion Vector (AMV) is very important data for numerical weather prediction (NWP) models as it provides valuable wind information, especially where no ground measurement exist. To obtain qualitative information from each AMV product, Quality Control (QC) is required to verify the quality of the product. Two popular QC schemes that are used are Quality Indicator (QI) (Holmlund, 1998) and Expected Error (EE) scheme (Le Marshall et al., 2004; Berger et al., 2008). The QI is a simple scheme which consists of five vector consistency tests, which are emphasized on spatial and temporal consistency. The EE is essentially an extension of the QI, but it is based on regression between the difference of AMV and rawinsonde wind with respect to the five QI tests results and AMV's speed, pressure, NWP model vertical temperature gradient, and wind shear. We have performed two QC methods on the AMV derived from Current Korean geostationary satellite (COMS).

In this study, we present AMV QC (QI and EE) characteristics of Current Korean geostationary satellite (COMS) for the next Korean geostationary satellite Geo-Kompsat-2A (GK-2A) AMV quality control.

COMS and GK-2A Specification

Sensor			Ор	Operational AMV info. and plan			
Spectral Coverage	COMS MI 5 bands	GK-2A AMI 16 bands	Target Selection	COMS MI Regular	GK-2A AMI Optimal		
Spatial Resolution			Target Size	24x24 (96x96 km²)	24x24 (TBD) (48x48 km²)		
0.6 <i>µ</i> m	1.0 km	0.5 km	Tracking Method	Cross Correlation	Cross Correlation		
Visible Infrared	- 4.0 km	1.0 km 2.0 km	Height Assignment				
Temporal Resolutior Full Disk FNH	a 3 hours 15 min	10 mins 5 mins	Clear Target Cloud Target	STC, EBBT IR/WV intercepts	GK2A-AMI CTH		
LA	7 mins	2 mins	Height Pixel Selection	Coldest 15%	CCC		
			Ouality Control	OI	OI. EE		

Results of Quality Control

We have performed two QC methods (QI, EE) on the AMVs derived from current Korean geostationary satellite (COMS-MI). The Analysis shows when QI is applied, a significant portions of slow wind vectors where are located in low altitude are eliminated [Column 2]. On the contrary, when EE is applied , relatively strong wind in high altitude is eliminated whereas slow wind in low altitude is selected [Column 3]. The combined QI and EE has provided improved AMV performance in selecting qualitative wind vectors both in low and high altitudes [Column 4].

Quality Indicator (QI)

The Quality Indicator is an index which computed by weighted averaged 5 contingency tests, temporal direction consistency, temporal speed consistency, temporal vector consistency, spatial vector consistency, and consistency with the forecasted wind (Holmlund, 1998). Current COMS AMV has been used only QI as their Quality Control (QC).

Expected Error (EE)

The Expected Error (EE) is calculated from the 9 components which are the wind speed, the wind speed and temperature shear, the pressure level and the five QI values. The vertical wind and temperature shear are clearly related to AMV error, determining how heigh assignment errors influence AMV quality. Least square regression is used to compute the root mean square error from the EE components. The EE will be used Geo-Kompsat 2A AMV quality control algorithms with QI.

Period

Target Size

Target Selection

Test Dataset

Satellite & Sensor	COMS
Region	COMS
Channel	IR 1 (10
	2014

COMS MI	
COMS ENH Region	
IR 1 (10.8 µm)	

and the second

	January ~ February 2014				July ~ August 2014			
	ALL	QI	EE	QI+EE	ALL	QI	EE	QI+EE
# of AMVs	2,562,503	508,775	339,007	650,278	3,039,345	558,762	462,559	805,295
Mean Vector Difference	7.934	4.177	2.639	3.869	6.475	4.104	2.579	3.653
Bias (Wind Speed)	-2.418	-0.502	-0.356	-0.523	-0.039	0.890	-0.342	0.444
RMSE (Wind Speed)	8.397	3.969	2.304	3.679	6.290	4.243	2.263	3.749
RMS Vector Difference	10.588	5.249	3.261	4.901	8.584	5.346	3.183	4.799
Normalized BIAS	-0.159	-0.027	-0.041	-0.032	-0.003	0.059	-0.044	0.035
Normalized RMSE	0.552	0.211	0.266	0.226	0.550	0.281	0.291	0.298
Normalized RMSVD	0.696	0.279	0.379	0.301	0.751	0.354	0.409	0.381

2014. Jan. ~ Feb. (2 month), every 6 hours 2014. Jun. ~ Jul. (2 month), every 6 hours

24x24 pixel² (96x96 km²) Regular

QI, EE Quality Control

Validation Dataset

Data NCEP Reanalysis FNL 2014. Jan. ~ Feb. (2 month), every 6 hours Period 2014. Jun. ~ Jul. (2 month), every 6 hours

Plan

- Optimizing QI and EE coefficients for Himawari8 AHI (for simulation) and GK-2A AMI sensor - Improving QI to evaluate every vector quality (highly curving or linear wind) - Developing automatic EE coefficient extracting program

References

• Holmlund, K., 1998: The utilization of statistical properties of satellite-derived atmospheric motion vectors to derive quality indicators, Weather and Forecasting, 13, 1093-1104.

• Le Marshall, J., L. Leslie, R. Seecamp, and M. Dunn, 2004: Error Characterisation of Atmospheric Motion Vectors. Aust. Met. Mag. 53, 123–131. • Berger, H., C. Velden, S. Wanzong, and J. Daniels, 2008: Assessing the 'Expected Error' as a Potential New Quality Indicator for Atmospheric Motion Vectors. Proc. 9th Int. Winds Workshop, Annapolis, Maryland, USA.

> 13th International Winds Workshop (IWW13) Asilomar Conference Grounds, Monterey, California, USA [27 June - 1 July 2016]