

Introducing Atmospheric Motion Vectors Derived from the GOES-16 Advanced Baseline Imager (ABI)

Jaime Daniels

NOAA/NESDIS, Center for Satellite Applications and Research

Wayne Bresky, Andrew Bailey, Americo Allegrino IM Systems Group (IMSG)

Steve Wanzong & Chris Velden

Cooperative Institute for Meteorological Satellite Studies (CIMSS)

- GOES-16 Advanced Baseline Imager (ABI)
- Review of the GOES-16 ABI Winds Product
 Specifications and Algorithm
- GOES-16 ABI Wind Product Examples
- GOES-16 Winds Validation Results
- Summary and Future Plans

GOES-16 Advanced Baseline Imager (ABI)

- Review of the GOES-16 ABI Winds Product
 Specifications and Algorithm
- GOES-16 ABI Wind Product Examples
- GOES-16 Winds Validation Results
- Summary and Future Plans

GOES-16 ABI Enhanced Capabilities

Higher Spectral Resolution

 Can see and retrieve new phenomena

Higher Spatial Resolution

 Higher fidelity imagery and L2 products; information at smaller scales now observed

Higher Temporal Resolution

 Physical and dynamical processes are now captured; new information to exploit and be used by user community

Improved Radiometrics

- Translate to more accurate products
- Improved Navigation and Registration
 - More accurate products and improved utilization of them

All of these things contribute to one being able to observe and retrieve phenomenon not previously observed before

Advanced Baseline Imager (ABI)

Full Disk: Hourly CONUS: 15 minutes Meso: 5 minutes

Mesoscale images (2) every 1 minute

Future Potential Operational ABI

Mesoscale images (2) every 1 minute

AMV Product Refresh Rate:

ABI Visible/Near-IR Bands

	Future GOES imager (ABI) band	Wavelength range (µm)	Central wavelength (µm)	Nominal subsatellite IGFOV (km)	Sample use
	I	0.45–0.49	0.47	I	Daytime aerosol over land, coastal water mapping
>	2	0.60-0.68	0.64	0.5	Daytime clouds fog, inso- lation, winds
	3	0.847-0.882	0.864	I	Daytime vegetation/burn scar and aerosol over water, winds
	4	1.366-1.380	1.373	2	Daytime cirrus cloud
	5	1.59-1.63	1.61	I	Daytime cloud-top phase and particle size, snow
	6	2.225–2.275	2.24	2	Daytime land/cloud properties, particle size, vegetation, snow

ABI IR Bands

Future GOES imager (ABI) band	Wavelength range (µm)	Central wavelength (µm)	Nominal subsatellite IGFOV (km)	Sample use
7	3.80-3.99	3.90	2	Surface and cloud, fog at night, fire, winds
8	5.79-6.59	6.19	2	High-level atmospheric water vapor, winds, rainfall
9	6.72-7.14	6.93	2	Midlevel atmospheric water vapor, winds, rainfall
10	7.24-7.43	7.34	2	Lower-level water vapor, winds, and SO ₂
II	8.23-8.66	8.44	2	Total water for stability, cloud phase, dust, SO ₂ rainfall
12	9.42–9.8	9.61	2	Total ozone, turbulence, and winds
13	10.18-10.48	10.33	2	Surface and cloud
14	10.8–11.6	11.2	2	lmagery, SST, clouds, rainfall
15	11.8–12.8	12.3	2	Total water, ash, and SST
16	13.0-13.6	13.3	2	Air temperature, cloud heights and amounts

GOES-16 ABI Frame-to-Frame Registration

NASA (

GOES-16 ABI Frame to Frame Registration 29 Nov 2017 - 1800 UTC vs 29 Nov 2017 - 1815 UTC

2 G-16 IMG 2 12 OCT 17285 210000 00401 00401 02.0

GOES-16 ABI Frame-to-frame registration is <u>excellent</u>!!!

Critical for accurate feature tracking.

MORANTER Figure courtesy Vladimir Kondratovich (GOES-R CWG)

- GOES-16 Advanced Baseline Imager (ABI)
- Review of the GOES-16 ABI Winds Product Specifications and Algorithm
- GOES-16 ABI Wind Product Examples
- GOES-16 Winds Validation Results
- Summary and Future Plans

GOES-16 Winds Product Specifications

Wind Product Capabilities					
Satellite Source	GOES-16 ABI				
Wind Product Types	Band 2 (0.64 μm):Visible AMVsBand 7 (3.9 μm):SWIR AMVsBand 8 (6.2 μm):Cloud-top Water Vapor (CTWV) AMVsBand 8 (6.2 μm):Clear-sky Water Vapor (CSWV) AMVsBand 9 (6.9 μm):Clear-sky Water Vapor (CSWV) AMVsBand 10 (7.3 μm):Clear-sky Water Vapor (CSWV) AMVsBand 14 (11.2 μm):LWIR AMVs				
Coverage	Full Disk; CONUS, Meso sectors				
Refresh	Mode 3: <i><u>Full Disk</u>:</i> 60 min; <u>CONUS:</u> 15 min; <u>Meso:</u> 5 min				
Horizontal Resolution	VIS AMVs:7.5 kmSWIR, CTWV, CSWV AMVs:30 kmLWIR AMVs:38 km				
Accuracy	7.5 m/s (Mean Vector Difference)				
Precision	4.2 m/s (St. Deviation about MVD)				
Other Attributes	Output file formats: NetCDF4 BUFR (using heritage & new winds BUFR tables)				

GOES-R Winds Algorithm Precedence Chain

Clear Sky Mask

Cloud Type/Phase

Cloud-top Temperature & Pressure

Winds

GOES-16 Winds Algorithm Overview

Nested Tracking Approach...

- Correlation based approach used to compute local motions (nested) within a larger target scene.
- A clustering algorithm is applied to line and element displacements to extract motion solution(s).
- Cloud heights at pixels belonging to the largest cluster are used to assign a representative height (Median) to the derived motion wind

Single Target Scene Example

 Potential for determination of motion at different levels and/or different scales

Bresky, W., J. Daniels, A. Bailey, and S. Wanzong, 2012: New Methods Towards Minimizing the Slow Speed Bias Associated With Atmospheric Motion Vectors (AMVs). J. Appl. Meteor. Climatol., 51, 2137-2151

GOES-R Winds Product Precedence Chain

Clear Sky Mask

Cloud Type/Phase

Cloud-top Temperature & Pressure

Winds

Cloud Top Pressure Product

Cloud Height Algorithm Highlights

- Algorithm uses the 11, 12 and 13.3mm channels to 0 retrieve cloud-top temperature. Cloud emissivity and a cloud microphysics are retrieved as well.
- Algorithm (1-D VAR) uses an optimal estimation 0 approach (Rogers, 1976) that provides error estimates (Tc).
- NWP forecast temperature profiles used to compute 0 cloud-top pressure and height.
- For pixels typed as containing multi-layer clouds, a 0 multi-layer solution is performed.
- Special processing occurs in the presence of low level 0 temperature inversions.

References

- Heidinger, A., 2010: GOES-R Advanced Baseline 0 Imager (ABI) Algorithm Theoretical Basis Document For Cloud Mask, GOES-R Program Office, www.goes-r.gov.
- Rodgers, C.D., 1976: Retrieval of atmospheric 0 temperature and composition from remote measurements of thermal radiation. Rev. Geophys. Space Phys., 60, 609-624.

Andy Heidinger (NESDIS/STAR) – AWG Cloud Team Lead

GOES-16 ABI Cloud-Top Pressure

Cloud-top Pressure (hPa) 900 850 800 700 600 350 300

250

200

150

450

400

GOES-16 Advanced Baseline Imager (ABI)

- Review of the GOES-16 ABI Winds Product
 Specifications and Algorithm
- GOES-16 ABI Wind Product Examples
- GOES-16 Winds Validation Results
- Summary and Future Plans

GOES-16 Band 2 (0.64um) Visible Winds (Mode 3) November 23 (00 UTC) – November 24 (23 UTC), 2017

GOES-16 Band 7 (3.9um) SWIR Winds (Mode 3) November 23 (00 UTC) – November 24 (23 UTC), 2017

GOES-16 Band 8 (6.2um) Cloud-Top WV Winds (Mode 3)

20002 G-16 IMG 8 23 NOV 17327 000138 00001 00001 36.0

Full Disk

High-Level 100-400 mb

Mid-Level 400-700 mb

Low-Level >700 mb

CONUS

GOES-16 Band 8 (6.2um) Clear-Sky WV Winds (Mode 3) November 23 (00 UTC) – November 24 (23 UTC), 2017

Full Disk

High-Level 100-400 mb

Mid-Level 400-700 mb

mb Low-Level

3002 G-16 IMG

Low-Level >700 mb

8 23 NOV 17327 000818 00001 00001 12.00

These GOES-16 data are preliminary, non-operational data and are undergoing testing. Users bear all responsibility for inspecting the data prior to use and for the manner in which the data are utilized.

NASA

GOES-16 Band 14 (11.2um) LWIR Winds (Mode 3) November 23 (00 UTC) – November 24 (23 UTC), 2017

GOES-16 Winds

- GOES-16 Winds derived every 5 minutes from mesoscale sector imagery and plotted over top of the ABI Band 2 (0.64um) visible imagery.
- Baseline algorithms and associated configurations used
- ABI bands used to generate the winds shown in this loop:
 - Band 2 (0.64um; 0.5km): Winds generated from cloud tracers at low levels of the atmosphere (below 700hPa) from this band
 - Band 8 (6.2um; 2km): Winds generated from cloud tracers at upper levels (at and above 350 hPa) of the atmosphere from this band
 - Band 14 (11.2um; 2km): Winds generated from cloud tracers at all levels (100-950 hPa) of the atmosphere from this band

Hurricane Irma 9/6/17 (1507–2202 Z)

Note: For clarity, not all AMVs are plotted

GOES-R AWG Winds Application Team

GOES-16 AMV Counts by Type Over a Typical FD

26-Jan-2018 Full Disk

0600 UTC Band 7 1800 UTC Bands 2, 8 (WVCT), 14 1830 UTC Bands 8,9,10 (all CSWV)

- GOES-16 Advanced Baseline Imager (ABI)
- Review of the GOES-16 ABI Winds Product
 Specifications and Algorithm
- GOES-16 ABI Wind Product Examples
- GOES-16 Winds Validation Results
- Summary and Future Plans

Status of the GOES-16 Wind Product Validation Effort

- GOES-16 wind product achieved a <u>beta level</u> of maturity on June 8, 2017
 - Product has been minimally validated and may still contain significant errors.
 - Product is not ready for operational use.
- Numerous updates/fixes made to the wind product processing software between June and October 2017 to improve the stability and quality of the GOES-16 wind product
- GOES-16 wind product achieved a <u>provisional level</u> of maturity on February 9, 2018
 - Product performance has been demonstrated through analysis of a small number of independent measurements obtained from select locations, periods, and associated ground truth or field campaign efforts.
 - Product analysis is sufficient to communicate product performance to users relative to expectations.
 - Issues with products may still exist, but are documented and being worked
 - Product is ready for operational use and for use in comprehensive cal/val activities and product optimization.

GOES-16 ABI Winds vs. Rawinsonde Winds

Period : November 1-30, 2017 Full Disk

- Speed bias profile characteristics (band 14 and Band 8 AMVs) indicative of sub-optimal height assignments (coordinating closely with GOES-R cloud team)
- Sub-optimal internal AMV Quality Control (ie., gross error checking)

25

Updated GOES-16 AMV Internal QC

- We recently tested an updated
 AMV gross error checking
 scheme (checks against GFS
 forecast wind)
- New band dependent AMV/GFS wind vector difference thresholds
 - Band 2: 6m/s
 - Band 7: 7m/s
 - Band 8 (cloud): 10 m/s
 - Band 14: 10 m/s
 - Bands 8-10 (clear sky): 12 m/s
- Estimated implementation dates into operations: June 2018
- Implemented this in our offline, experimental, near real-time GOES-16 AMV data stream starting at ~00Z Friday (4/6). (Available via anonymous ftp)

Baseline Cloud height algorithm and AMV gross error checking

Baseline Cloud height algorithm and **Updated AMV gross error checking**

New gross error checking has the intended effect

 $\sim 10\text{-}15\%$ of the AMVs fail gross error checks

Speed biases at mid levels improve

Slow speed bias above 300mb still indicative of height assignment issues

۲

Updated GOES-16 Cloud Height Algorithm

Current Results

- We recently tested the
 impact of GOES-16 cloud-top
 height products from an
 updated cloud heights
 algorithm on GOES-16 AMV
 performance
 - Estimated implementation dates into operations
 - Cloud Height Algorithm Updates: Oct 2018
- Implemented this in our offline, experimental, near real-time GOES-16 AMV data stream starting at ~00Z last Friday (4/6). (Available via anonymous ftp)

Updated cloud height algorithm

- Reduction in the slow wind speed bias at upper levels
- Slow wind speed bias in the 400-600 mb layer

Current Results

Histogram of GOES-16 AMV Height Assignments

Note the change in the distribution of AMV height assignments associated with updated cloud height algorithm, especially at upper levels.

Histograms GOES-16 AMV/Rawinsonde Departures

November 1-30, 2017

Band 14 (11um) AMVs: - 100-300 mb

- QI: 60-100

Speed Departures (AMV-Raob)

Direction Departures (AMV-Raob)

CTPs from Baseline Cloud Height Algorithm and Baseline AMV gross error checks are used CTPs from Updated Cloud Height Algorithm and Updated AMV gross error checks are used

Much improved speed departure histogram (shape and position) with updated CTPs and AMV gross error checking

Current Results

Working on plans to implement latest version

- GOES-16 Advanced Baseline Imager (ABI)
- Review of the GOES-16 ABI Winds Product
 Specifications and Algorithm
- GOES-16 ABI Wind Product Examples
- GOES-16 Winds Validation Results
- Summary and Future Plans

Summary and Future Plans

- Overall quality of the GOES-16 AMVs is good
- We've identified issues impacting the quality of the GOES-16
 AMVs and are working to resolve them
 - AMV height assignment issues traced to sub-optimal cloud-top pressure retrieval product, especially for cirrus at upper levels of the atmosphere
 - Internal AMV Quality Control
 - NWP user feedback we've received about the GOES-16 AMVs is consistent with our validation findings
 - We've measured the impact of the fixes to these issues on the quality of the GOES-16 AMVs the impact is significant and positive
- We will be involved with Intensive calibration/validation of GOES-17 AMV products through August 2018

Jaime Daniels: jaime.daniels@noaa.gov

35