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ABSTRACT 

The Marshall Automated Wind (MAW) algorithm for wind determination from geostationary satellite 
data is described and contrasted with other methods. The major differences between the MAW 
technique and others are found in the target selection, template size, search area constraints, and 
in the quality control procedures. Using appropriate data dependent tracking parameters and 
quality controls, random wind errors are held to around 3.0 ms-1 as estimated with structure 
function analysis. It is shown that structure function analysis is also a useful tool to monitor the 
reduction in wind errors as a result of tracking procedure improvements. A tracking error parameter 
is developed to provide guidance for the trade-offs between spatial and temporal resolution when 
rapid scan satellite imagery is used. Major sources of error implicit in wind tracking are discussed.  

1. INTRODUCTION 

The standard approach taken in generating wind fields from geostationary satellite data uses a 
sequence of two or more images to track identifiable image features (determine image 
displacements). There has been considerable research into developing the optimum tracking 
algorithms for this purpose, much of which has been documented in previous wind workshops and 
also in the peer-reviewed literature. In this paper, we document a technique which is similar to the 
approach taken by NESDIS for their operational applications (Velden et al. 1997, and Neiman et al. 
1997) but incorporates features (different template sizes, search conditions, and quality controls) 
which may improve the wind determination under particular situations. The Marshall Automated 
Wind (MAW) technique was initially developed over 15 years ago in support of NASA mesoscale 
wind studies and has been refined over the years and is now used as a climate analysis tool and to 
provide validation datasets for future wind sensor studies. An assessment of the errors in the winds 
derived from the MAW is made using structure function analysis which does not rely on a priori 
information or rawinsonde data for comparison. We also present a comprehensive discussion on 
the source of errors in cloud- and water vapor-tracked winds and how the methodology used in the 
MAW algorithm minimizes these problems.  

2. TRACKING METHODS 

The basic approach of all satellite wind tracking schemes is the identification of features common 
(in time) to a sequence of images and the determination of their relative positions with respect to 



some fixed coordinate system. The latter is accomplished by using accurate navigation of the 
individual satellite images and a conversion of displacement in satellite coordinates to that of earth 
coordinates. This procedure is well established. The former problem (feature identification) is not a 
trivial issue and is compounded by relatively poor satellite resolution of clouds and water vapor 
features and the changing dynamical environment which governs cloud development and the 
movement of water vapor in the atmosphere. Originally this task was done with the concept of the 
"man-in-the-Ioop" whereby the human, with superior ability to visually identify and track features, 
views a sequence of images to accurately identify and determine physical displacements of clouds 
in the imagery (Stewart et al. 1985). This process is highly accurate because the human can also 
use his knowledge and experience of atmospheric processes to determine the proper features to 
track. This process is quite labor intensive and not applicable to the generation of large wind 
datasets for research or operational applications. There are a number of automated approaches to 
feature identification between a pair of images (e.g., Endlich et al. 1981; Eigenwillig and Fischer 
1982). Soden (1998) has developed an approach that uses a time-lagged cross correlation method 
on a sequence of two GOES VAS water vapor images separated by 60 minutes. Reverse 
correlation (tracking features in the second [later in time] image to the first image) is used to provide 
confidence in the retrieved wind vector. Laurent (1993) used a cross correlation method with a 
sequence of three Meteosat 5 images separated by 30 minutes with vector pair checks used for 
determining good wind vectors. Velden et al. (1997) and Neiman et al. (1997) described the 
approach used by NOAA/NESDIS for both operational support and research applications. Their 
approach uses the sum of the squared differences between the target box and a search box in a 
sequence of three water vapor images separated by 30 minutes in time. Vector pair consistency 
checks and automated editing procedures based on model forecasts are used in quality and 
control procedures. The MAW approach is similar to that used by NESDIS, but just the sum of the 
difference between pixels in a tracking template from image to image provides the feature 
matching between sequential images. These algorithms differ in other ways as well; namely, in 
their use of template size, search area, target selection, and editing procedures which can produce 
differences in the accuracy and resolution of the derived wind vectors.  

3. MARSHALL AUTOMATED WIND TECHNIQUE 

Early versions of the MAW algorithm have been documented in Atkinson (1984, 1987). The 
discussion below describes the current version of the MAW algorithm which has been used to 
study the upper-level water vapor transport associated with the 1987/1988 ENSO period and is 
now being applied to investigate water vapor transport during the 1997-1998 ENSO event. The 
algorithm uses a minimum-difference template matching scheme for feature identification and 
tracking. In the tracking procedure, the first of a pair of images is divided into image sub-scenes 
called templates, while the second image contains sub-scenes called search areas (Figure 1). The 
template (T1) is an array of picture elements and the spatial location of a template is designated as 
the template's center picture element location in the image (e.g., i,j). The initial target regions are 
uniformly spaced throughout the image. To determine feature displacement or motion (winds), 
each template, T1

i,j, in image 1 is translated to all possible positions within a corresponding search 
area, S2

i,j, in the second image looking for the best match. The best match is simply the position of 
the template, T2

i+x,j+y, in image 2 which, when differenced with the original template position in 
image 1, gives the smallest mean difference value. Once the best match is found, its position within 
the search area (i+x,j+y) along with its initial position in image 1 determine the template 
displacement (D) between the two images (x,y) in satellite coordinates. Accurate navigation and 
registration of the two images allows for the determination of displacement or velocity vectors 
relative to the Earth (u and v components of the wind). The MAW approach is optimized when a 
sequence of three images is used to derive two vectors (displacement of feature from image 1 to 
image 2, and displacement of the same feature from image 2 to image 3) for the movement of each 
feature (Figure 1). The vector pairs (V1 and V2) are used in quality checks as discussed below, and 
the average of the two vectors is used as the final estimate of the wind over the template region. A 



 
Figure 1. Feature identification and tracking approach used in the MAW technique.  

pressure-height is assigned to the wind based on referencing the mean brightness temperature 
over the template to a local thermodynamic profile. 

When using the MAW tracking scheme, there are several decisions to be made that affect the 
quality of the resulting motion vectors (winds): image spatial and temporal resolution, template 
size, and search constraints. Experience indicates that the highest quality winds come from the 
appropriate match of spatial and temporal resolution. Merrill (1989) and Schmetz et al. (1993) have 
discussed the effect of image resolution on the ability to track image features. Use of high temporal 
resolution data with coarse spatial resolution produces poor winds because the pixel displacement 
of the feature is small, in which case navigation and registration uncertainties heavily influence the 
results. This is visualized with the development of the Tracking Error Lower Limit or TELL. The 
TELL indicates the appropriate (actually minimum) image separation time for a given spatial 
resolution of satellite data to keep image registration errors from dominating the results. The TELL 
(ms-1) is expressed as the product of the image spatial resolution (X) and the image-to-image 
registration accuracy (Z) divided by the image temporal resolution (Y). The lower limit on the wind 
accuracy is a function of how well the data can detect small movements in features in the satellite 
imagery which is a function of these three parameters. For a given set of X, Y, and Z values, a 
family of curves can be generated that describe the lower limit on the expected wind accuracy. The 
chart of this is presented in Figure 2. For an assumed image-to-image registration of 0.25 pixels 
typical for GOES 8/9/10 (Graumann 1998), a family of curves can be generated and are shown for 
various image separation times. It can be seen that for 8 km image data (e.g., for GOES 8/9/10 
water vapor imagery), the TELL is less than 2.0 ms-1 for image separations of greater than 15 
minutes. As smaller temporal separations are used, the imagery is unable to resolve small 
movements in cloud or water vapor features because of the relatively course resolution of the 
image data. For 4 km data, temporal separation of about 7-8 minutes can be used to resolve winds 
with an accuracy down to 2.0 ms-1. The chart can be used another way as well. For example, for 1 
minute imagery and 1 km spatial resolution image data, wind errors will likely exceed 4.0 ms-1 due 
to feature location uncertainty alone. Obviously these curves will change as the assumed 
image-to-image registration accuracy is changed. Thus the bottom line is that there is a limit to the 
use of finer temporal resolution without increased image resolution. This trade-off impacts the 
accuracy of the winds. On the other hand, large temporal sampling may introduce errors in tracking 
because of the evolution and subsequent de-correlation of features between image times. This 
problem is dependent on the particular application and scale of the features being tracked, both of 
which are difficult to quantify.  



An example of water vapor winds derived from applying the MAW algorithm to a sequence of 
GOES 9 images for February 22, 1998 is presented in Figure 3. Three images (8 x 4 km resolution) 
were used with a 15 x 55 pixel tracking template (square in earth coordinates because of pixel 
sampling and overlap). The initial positions of the tracking template were selected as regular 
gridpoints with a spacing of about 120 km. This provided near-contiguous spatial coverage without 
template overlap. A circular search area of 225 km allowed for a maximum wind of 75 ms-1 (which 
increases away from nadir). The use of three images allows for the calculation of two vectors 
corresponding to each feature. The average of the two vectors for each location is plotted in the 
figure. The initial distribution of wind vectors is quite uniform (by design) and the winds show good 
spatial consistency in most areas.  

The calculation of two wind vectors per feature is quite common in both research and operational 
processing of satellite data (Nieman et al. 1997; Velden et al 1997; Laurent 1993; Schmetz et al. 
1993) and it allows for continuity or symmetry checks between the vector pairs. Speed differences 
between vector 1 and vector 2 at a given location greater than 10 ms·1 or direction differences 
greater than 20° serve as the primary quality control on the MAW winds in this instance. Jedlovec 
et al. (1998) used 15 ms-1 and 30 ° respectively for GOES VAS data. This approach is a bit different 
from the operational scheme of NESDIS (Nieman et al. 1997) where a 5 ms-1 u and v vector pair 
threshold is the primary filter on bad winds (although additional automated procedures are also 
used). Our approach is less restrictive in that it allows larger deviations, and flags (as bad) vector 
pairs which show totally different flow characteristics (large direction differences between vector 
pairs). Vector pairs which show considerable agreement are averaged together to form a single 
vector valid at the middle image time and assigned a location on Earth based on the average 
displacement of the two vectors. Figure 3 shows both the good winds and the bad winds (those 
which failed the above speed and direction checks). It is quite apparent that the bad winds (red 
wind flags) are spatially inconsistent with many of their neighbors. These bad vectors occur 
throughout the image but are more prevalent in non-cloud regions of the water vapor imagery. The 
errors probably result from 1) lack of trackable image structure, 2) significant changes in image 
structure over the 2-hour tracking sequence, or 3) multiple solutions in the matching approach. 
There are many good wind vectors (yellow) throughout the image which show consistent flow 
patterns associated with outflow from tropical convective systems, strong winds associated with 
synoptic systems in both hemispheres, and large-scale flow characteristics winds away from 
convective regions.  

4. WIND ERRORS 

In the application of tracking algorithms to sequential satellite imagery for wind determination, it is 
assumed that the clouds or water vapor features are conservative, passive tracers of the wind field. 
However, this is not always the case and changes in shape and radiative characteristics of clouds 
and water vapor features may be mis-interpreted and lead to wind errors. Velden et al (1997) 
recognized this and provides an explicit correction to the wind vectors to account for a consistent 
slow bias when compared to the model forecast of winds. Wind vectors can also be in error as a 
result of mis-identification of targets from scene-to-scene and from improper determination of 
correct image displacements. The latter arises from inaccurate image navigation and registration 
between image scenes and usually results as a bias in all vectors. This mis-registration can be 
identified and corrected when it occurs by tracking discernable surface features in the visible or 
infrared window channel imagery.  

The magnitude of the error implicit in satellite derived winds is, at times, difficult to assess because 
of the lack of ground truth or verification data. There is a tendency to compare satellite-derived 
winds to rawinsonde winds to assess their accuracy. While rawinsondes provide a traditional 
standard for ground truth comparisons of many satellite-derived products (temperature and 
moisture profiles, total precipitable water vapor, winds, etc.), care must be used in interpreting the  



 
Figure 2. The Tracking Error Lower Limit (TELL) curves in the diagram above provide a mechanism 
to assess the effect of image spatial resolution and temporal separation on tracking accuracy.  
 

 
Figure 3. Upper-tropospheric water vapor-tracked winds from the GOES 9 satellite using the MAW 
algorithm. Winds exceeding a 10 ms-1 speed deviation and a 20° direction deviation are plotted in 
red along with the good wind vectors in yellow. Spacing of the winds is about 120 km.  



results of such comparisons for winds. The rawinsondes are essentially a point measurement at a 
specific time and have their own error sources. Satellite-derived winds are a volumetric (vertical 
and horizontal) estimate of the flow characteristics averaged or sampled over a period of time 
(anywhere from a few minutes to hours). These comparisons (to rawinsonde data) can only provide 
limited guidance on the accuracy of satellite derived winds. A somewhat unique approach to error 
assessment in satellite-derived winds is the use of statistical structure function analysis to 
independently quantify the random error associated with the wind dataset without reference to 
rawinsonde or modeled wind data. Hillger and Vonder Haar (1988) and Fuelberg and Meyer (1986) 
and others have shown that structure function analysis can be used to estimate the magnitude of 
mean non-direction gradients (structure) in data fields. The value of the structure curves at small 
separation intervals can be used in the error estimation. Structure function analysis was used to 
estimate the random error in the water vapor winds shown in Figure 3. When all the winds are 
considered, the error was determined to be 7.4 ms-1. When the quality control thresholds (vector 
pair differences of 10 ms-1 in speed or 20° direction) are considered, random errors are reduced to 
3.4 ms-1 . The reduction in this random error associated with the use of editing procedures is used 
as a measure of success for the quality and control parameters.  

One of the key parameters in the MAW approach is the template size. The template defines a 
region in the image which contains the pattern to be matched. Laurent (1993) used a 32 x 32 pixel 
(25,600 km2) region in 5 km Meteosat 5 data while Soden (1998) used a region equivalent to 46 x 
46 pixels (135,424 km2) in 8 km GOES-7 data. Neiman et al. (1997) and Velden et al. (1997) use a 
15 x 15 pixel (2160 km2) region in 4 km GOES-8 data. Not only is the template quite small, but the 
template shape (footprint on ground) is rectangular because of sensor fov overlap. This biases 
search conditions and template matching. Jedlovec et al. (1998) used a 49 x 49 pixel template 
(153,664 km2) with GOES VAS data. The large templates with GOES VAS were necessary 
because of the coarse sensor resolution (actually 16 x 16 km) and poor radiometric quality of the 
data. Our current work with GOES 8/9/10 varies between a 13-15 x 45-55 pixel (7406 km2) square 
(on the ground) template which is three times the size Velden et al. (1997) used for GOES 8 data. 
If the template is too small, the pattern or structure of the water vapor field is quite uniform, making 
a successful match in the second or subsequent images difficult to accurately obtain. In order to 
determine the best template size, one can examine the spatial structure in the GOES imagery. This 
has been explored to some degree in the past by Jedlovec and Atkinson (1996). In the absence of 
clouds, the upper-tropospheric water vapor structure is quite limited, with significant gradients 
observed only at scales greater than several hundred kilometers. The presence of high clouds 
adds significant structure to the imagery at scales below this threshold.  

Another way to determine the appropriate template size for feature tracking is to demonstrate the 
relationship between accuracy of the winds and template size. To show this, the MAW scheme was 
used to track features in GOES water vapor imagery with varying template size. The results are 
shown in Figure 4 for GOES-8 imager data. The random noise present in the derived wind vectors 
for each run was determined with structure function analysis. It is obvious from the figure that large 
wind errors are associated with small templates. Jedlovec and Atkinson (1996) showed a similar 
curve for GOES VAS data. The noise is lower in the GOES-8 data because of better sensor 
resolution (nominally 16 x 16 km for VAS and 8 x 8 km for GOES-8 imager) and radiometric 
precision of the data. Significant errors occur at small templates because there is ambiguity in 
matching small features (structure in small templates) over a given time interval. There is some 
indication that a geometrically square (on the ground) template does better than a similar size 
rectangular one. The random noise decreases with increasing template size as the larger template 
detects more image structure. The approximate node point in the curve where random wind errors 
no longer change rapidly with template size is about 25 x 45 pixels for GOES 8 data. Previous work 
has shown that a template size of 49 x 49 - 8 km pixels is appropriate for the older GOES VAS data 
which is consistent with the template size used by Soden (1998) and Jedlovec et al. (1998). For 
GOES 8 data, random wind errors for typical templates range from 3-8 ms-1 for unedited data (with 
no post processing quality control). Smaller templates may be appropriate for cloud tracking where 



thermal (infrared) or reflectance (visible) image structure is greater than that of the water vapor 
imagery or in regions of the water vapor imagery where high clouds dominate. The use of quality 
control procedures to reduce the errors in the data has an interesting effect on the noise versus 
template size relationship. Noise can be significantly reduced for all template sizes with the use of 
appropriate quality controls. In Figure 4, the thin, long-dashed curves corresponded to the use of a 
5 ms-1 acceleration criteria (typical for NESDIS operations) between two vector pairs. For this 
situation, random noise is estimated at between 2-4 ms-1 for all template sizes. As can be seen by 
the small dashed lines (right axis), the number of good vectors (those passing quality controls) is 
substantially reduced (by as much as 50-75% for NESDIS operations) as a result of the quality 
controls.  

Another tracking algorithm parameter which can induce errors in the winds if not properly selected 
is the size of the search area. The search area size (and shape) should be influenced by the 
expected magnitude and direction of the wind. Use of too large a search area may allow erroneous 
matches which produce unrealistic wind displacements. Very small search areas artificially 
constrain the winds and reduce the number of good matches in the search area.  
 

 
Figure 4. Random noise in wind datasets as a function of tracking template size.  

 

Velden et al. (1997), Neiman et al. (1997), and Schmetz et al. (1993) have used winds from a 
numerical model to provide a first guess location of the image displacement (wind) to center a 
search and to potentially reduce computation time. This is helpful if computer time is important 
(operational constraints) and if the user is confident that the "guess" is reasonable. While limiting 
the search area to some reasonable size (based upon maximum expected wind) is prudent, our 
experience has shown that in regions where winds are poorly represented in model forecast fields 
(such as tropical ocean regions), use of a model guess could force the wind retrieval algorithm to 
look in the wrong place for a match. In the performance analysis of MAW algorithm, the rejection of 
a large number of wind vectors because the template difference is on the edge of the search area is 
an indication of too small a search area or limited image structure. In our evaluation of the NESDIS 



operational wind algorithm (Jedlovec and Atkinson 1997) 10-12% of the initial targets were rejected 
because matches were found on the edge of the search area. In our current applications to GOES 
8/9/10 data, the search distance is selected based on image resolution and temporal separation 
such that speeds up to 75 ms-1 can be detected. No guess is used to influence the position of the 
search area. Recent work has also shown that utilizing a smaller search area in subtropical high 
pressure regions where winds are light reduces the number of bad vectors by reducing the 
possibility of erroneous matches. The implementation of a scheme which varies search radius or 
distance over the image is being considered for the MAW algorithm.  
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